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. Introduction

This is a review of an approach to organizing data
on chemical—chemical and chemical—biological reac-
tions in numerical mechanistic terms such that
numerous comparisons can easily be made and
delineated. Ideas on how to mine these databases for
very specific information are illustrated. In the
development of our computerized system, a major
point of interest has been to be able to make
comparisons of quantitative structure—activity rela-
tionships (QSAR) between simple chemical reactions
and reactions drawn from biological systems. Many
instances have been noted where such comparisons
are of definite value in understanding the more
complex and sophisticated biological processes.

The glut in scientific information, which is growing
at an exponential rate in conventional publications
and on the world wide web, seriously taxes our ability
to organize it or make proper use of it. In chemistry
alone, Chemical Abstracts publishes almost 2000
abstracts/day (1949). A 3 month vacation would set
you behind 175 410 abstracts! Thus, it is not surpris-
ing that researchers tend to work in narrowly defined
compartments. Reviews tend to cover various focused
interests, but what is lacking is more integration and
cohesion. This problem is exacerbated at the interface
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between chemistry and biology. The advent of high-
speed computing and enormous storage capacity
allows us to organize what has been done in addition
to generating new data. We have been trying to make
a very small dent in the problem via the quantitative
structure—activity relationships (QSAR) paradigm
since its advent in 1962.1

In addition to the innumerable publications on the
subject, there are now 12 500 web sites on QSAR. It
is impossible to peruse 12 500 pages and collect what
might be useful. The ability to keep track of what is
happening in the field of QSAR is a daunting task.
There are now numerous other approaches to QSAR.
Many software companies market programs for SAR
and QSAR. It is no surprise that most universities
have started departments of information science and
are struggling with their development. The flood of
information in science has occurred with relatively
little input from the continents of South America,
Africa, and much of Asia. What will happen when
these areas begin to produce like the United States
and Europe? Newspaper reports indicate that there
are about 1000 biotech companies in Europe and a
comparable number in the United States. The needs
of these companies as well as those of the large
pharmaceutical enterprises, plus the constantly in-
creasing interest of the major countries in environ-
mental toxicology, greatly stimulates computerized
attempts to understand the interactions between
organic chemicals and every conceivable aspect of life
from genes, enzymes, cells, membranes, plants, in-
sects, animals to humans.

It has been a struggle to understand how to
commence the development of a science of chem-
ical—biological interactions. By science is meant
mathematical descriptors using a relatively small
number of well-tested parameters?—° and molecular
graphics'®~1? to make the connections. A start on this
problem has been made by creating a database of
over 17 000 QSAR of which 8500 pertain to biological
systems and 8600 are from mechanistic organic
chemistry. This has not been an easy task, even for
the development of simple QSAR from mechanistic
organic chemistry, since there is no simplified method
to collect such data! This illustrates the crux of the
problem facing information science. Chemical Ab-
stracts lists such equations under the heading of
LFER (linear free energy relationships), Hammett,
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and sometimes correlation analysis. However, in
many instances, the authors do not use these terms
and no direct reference is possible. The only way to
make progress is to check the references in each
paper that is found and check the references in those
papers and so on. The chemistry articles are easily
entered into the system since, in most cases, the
authors have formulated an appropriate equation.
However, in the early work (1935—1965), before the
advent of easy to use computers (the IBM 360
appeared in 1965), researchers made few attempts
to explore more than one-variable equations. Regres-
sion analysis was unknown to chemists. Much of this
work has been recast using steric and electronic
parameters in a dual-parameter approach.
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Dealing with the biological QSAR was, and still is,
a complex and difficult problem. Even today only a
very small percent of researchers attempt any
kind of a QSAR. In the last 20 years, SAR workers
are slowly beginning to use a wide variety of
approaches!®~17 to formulate equations or 3-D models
to understand these interactions. Many of these
approaches (as well as 2-D QSAR) have given the
impression that various chemicals can be sequestered
together to yield a QSAR with a good r?. This means
that at times the independent variable may not
characterize a uniform mechanism of action/reaction.
Such an approach can be grossly misleading. As yet,
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none of these new approaches have been shown to
be capable of doing comparative QSAR. Until one can
make such comparisons, one does not have the
beginnings of a foundation for developing a science
of chemical—biological interactions.

As with QSAR for mechanistic chemistry, locating
satisfactory data for developing biological QSAR is a
tenuous process. Each new QSAR generally has to
be formulated from scratch. This process entails the
rigorous perusal of certain sections of chemical
abstracts and a few journals, followed by an inves-
tigation of interesting references. In some instances,
emphasis has been placed on certain topics such as
radical reactions,® potential HIV drugs,” compounds
binding to the estrogen receptor,® QSAR lacking

Table 1. Organization of Sets
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hydrophobic terms,® and allosteric interactions.*5415°
Success stories using QSAR have been reported.®®

The design of ‘search engines’ is influenced greatly
by how the data is entered and where ones interests
lie. Our current system was started almost 30 years
ago'® when bioinformatics was not in vogue. Comput-
ers were in their infancy, and this too influenced
design. The main problem with search engine design
is careful organization so that a focused search does
not warrant visual inspection to obtain relevant
information. We admit that our present system needs
improvement in this regard. Nevertheless, we believe
that our experience will be of considerable help to
others in developing more sophisticated approaches
to the study of the chemistry of living systems and
their components. Our data will be of help in the
evolution of QSAR informatics systems.

[I. Structure of the Database

An overview of our system is outlined in Tables
1-4. From the beginning, a major concern has been
the arrangement of the structure so that one could
sequester all the information related to a particular
problem, leaving out extraneous material. Hence,
since one is most often working on either the biologi-
cal or physical data, our databank is divided into two
sections. The two areas have been subdivided as
shown in Tables 2 and 3 and Scheme 1. However,
these subsections can be searched separately or in
combination. There is one important difference in the
two sections under the field 'SYSTEM'. In Table 1,
the appropriate solvent has been entered as System
for the organic reactions. Sequestering our system
into a variety of classes means that all QSAR on one
or more subjects can be analyzed singly or together.
For instance, one could select B2A and B6B and
garner equations for enzymes and insects for com-
parison. This might seem strange, but one can go
further and next select out of this mixture of sets

field title description
input data
1 SYSTEM biological or physical system
2 CLASS Pomona classification of system (Tables 2 and 3)
3 COMPOUND parent compound (if any)
4 ACTION measured action or activity
5 REFERENCE journal reference or other source of data set
6 SOURCE person who entered data set
7 CHECK person who checked data set
8 NOTE additional information about data set
9 DATE date on which set was saved into database
10 PARAMETERS list of parameters?
11 SUBSTITUENTS labels of substituents
12 SMILES topological description of compounds
13 DATA** table of parameter values®
14 PRM MAX/MIN maximum and minimum of each parameter
output data (equation)
15 TERMS IN EQN parameters in regression equation
16 EQUATION regression coefficients for each parameter
17 IDEAL ideal (or optimal) log P, and confidence limits
18 STATISTICS n, df, r, s, etc.
19 RESIDUALS deviations between y-predicted and observed
20 PREDICTED predicted values of dependent parameter

a Examined, even if not used in final equation. ® Note: in SEARCH MENU (mode), this field is for MERLIN substructure

searching.
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Table 2. Class Codes—Biological Database (Number of Sets in Parentheses)?

BO unknown B4 Single-Celled Organisms
B4A algae (37)

B1 nonenzymatic Macromolecules (DNA, B4B bacteria (691)

fibrin, hemoglobin, soil, albumin, etc.) (237)

B4C cells in culture (702)

B2 Enzymes B4E erythrocytes (82)

B2A oxidoreductases (676) B4F fungi, molds (251)

B2B transferases (160) B4P protozoa (104)

B2C hydrolases (668) B4V viruses (165)

B2D lyases (37) B4Y yeasts (47)

B2E isomerases (12)

B2F ligases (3) B5 Organs/Tissues

B2G receptors (1065) B5C cancer (110)
B5G gastrointestinal tract (77)

B3 Organelles B5H heart (86)

B3A mitochondria (88) B5I internal/soft organs (66)

B3B microsomes (97) B5N nerves, brain, muscles (337)

B3C chloroplasts (83) B5S skin (53)

B3M membranes (98) B5L liver (20)

B3R ribosomes (0)

B3S synaptosomes (22) B6 Multicellular Organisms
B6A animal (vertebrates) (675)
B6B insects (197)
B6F fish (187)
B6H human (42)
B6I invertebrates (noninsect) (101)
B6P plants (126)

a In some biological examples the numbers in parentheses may be smaller than indicated. This results from assigning more
than one reference number to a particular study, e.g., for a study of compounds curing mice of a bacterial infection under class
we might enter B4B and B6A.

Table 3. Class Codes—Physical Database (Number of Sets in Parentheses)

PT Theoretical (30) P7 Addition
P7D dimerization (10)
PO Unknown P7E electrophilic addition (150)
P7N nucleophilic addition (218)
P1 lonization (1618) P7P polymerization (12)
P1P ionization potential (33)
P1X proton exchange (72) P8 Elimination (153)
P9 Rearrangement (193)
P2 Hydrolysis (791) P10 Oxidation (513)
P12 Radical Reactions (571)
P3 Solvolysis (624) P13 Complex Formation (104)
P4 Spectra P14 Partitioning (132)
P41 ionization spectra (61) pP14C chromatography (22)
PAE ESR spectra (2)
PAM Mass spectra (12) P15 Pyrolysis (90)
P4AN NMR spectra (176) P16 H-Bonding (28)
P4AR IR spectra (9) P17 Electrochemical (242)
P4U UV spectra (23) P18 Brgnsted (121)
P19 Esterification (238)
P5 Miscellaneous Reactions (446) P20 Photochemical (39)
P21 Hydrogenation (16)
P6 Substitution P22 Isokinetic (3)
P6E electrophilic substitution (247) P23 Reduction (82)
P6N nucleophilic substitution (1137)
Scheme 1

Total Database (Table 1)

—

Biological Database (Table 2) PhysicaliDatabase (Table 3)

6 Major Subcla}ses (Table 2) 24 Major Subclasses (Table 3)

34 Minor Subclises (Table 2) 15 Minor iubclasses (Table 3)
Paraieters Parameters

Electronic, Hydrophobic, Steric (Table 4) Electronic, Steric (Table 4)
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Table 4. 2
1 PI pi ref
2 MR-SUB substituent refractivity 76, 77
3 F field effect (from S—L) 22
4 R resonance effect (from S—L) 3
5 R+ resonance plus 3
6 R— resonance minus 3
7 ES E(s) from Taft 74
8 L-STM length sterimol 75
9 B1-STM width sterimol 75
10 B5—-STM width sterimol 75
11 S-P sigma para 3
12 S—P+ sigma para plus 3
13 S—P— sigma para minus 3
14 S—M sigma meta 3
15 S—M+ sigma meta plus 3
16 S—M-— sigma meta minus 3
17 S—INDUC sigma inductive 3
18 S—STAR sigma star from Taft 3
19 ER-P electronic radical, para 6
20 ER-M electronic radical, meta 6
21 S.DOT-P sigma dot, para 6
22 S.DOT-M sigma dot, meta 6
23 S.-DOT-P sigma dot, para (JJ) 6
24 S.-DOT-M sigma dot, meta (JJ) 6
25 S.P-C sigma para (C) 6
26 S.M=C sigma meta (C) 6

@ To those not familiar with terms from physical organic
chemistry a glossary has been compiled. Muller, P. Pure Appl.
Chem. 1994, 66, 1077.

those that contain certain features such as a term in
o~ or that lack hydrophobic terms. Or one might want
to consider QSAR based on 20 or more data points
with r? > 0.90, etc.

In compiling the physical database from mecha-
nistic physical organic chemistry studies, we have
concentrated on chemical reactions in solution. Al-
though there are some examples (295) based on
spectra and gas-phase reactions, no attempt was
made to be complete in these areas. The same applies
to the Brgnsted reaction (121 examples). Reactions
that constitute a Brognsted type are now entered
without comment.

Many papers report results from kinetic runs at a
variety of temperatures. Generally we have reported
only one example at the temperature nearest to 25
°C. In cases where a reaction has been run in various
mixtures of solvents (e.g., ethanol and water), we
have reported representative examples. For lack of
time, we have not attempted to standardize the
dependent variables as we have in biological reac-
tions. We have simply used the log of rate or equi-
librium constants. For this reason, intercepts in the
physical equations cannot be compared. Publication
of Hammett-type equations has occurred at such a
rapid rate and in such diverse areas that it was
impossible to organize the results before modern
interactive computing. Finally, after considerable
effort, we acquired a large percentage of the data and
devised the means to view it from many perspectives.

Biological QSAR has been in an even more con-
fused state. The major areas—biochemistry, medici-
nal, and pesticide chemistry and the various toxicol-
ogies—all have a large number of subspecialties e.g.,
enzymology, anesthesiology, cancer, mutagenesis,
metabolism, cardiology, pyschobiology, bacteriology,
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plant physiology, urology, etc. It is apparent from
Table 2 that, beyond the few key words listed, we
have not as yet attempted to include them in a
systematic way. Yet they can provide significant help
to the researcher. A further complicating factor is
that reports on these studies, which are now appear-
ing at an ever increasing rate, are published in
hundreds of extremely diverse and sometimes ob-
scure journals and hence are difficult to find. Our
database shows that partition coefficients (at the
moment we have almost 30 000 experimentally mea-
sured octanol/water log P and log D values of which
over 12 000 are unique for the neutral species and
considered to be reliable), from which hydrophobic
parameters are derived, have appeared in over 600
different journals. Sources of biological data are even
more diverse. We believe the time has come to
integrate these results into a useful format. Since a
variety of approaches are currently being studied for
the formulation of QSAR, one might question whether
this is the time to pursue such an approach. However,
the experimental data reported and organized will
be of value for decades to come regardless of how the
methodologies evolve. In fact, our system will provide
the testing ground for the various new approaches
stemming from quantum chemistry, molecular dy-
namics, and modeling.

Many data sets have been poorly designed or suffer
from a total lack of design. The QSAR for these sets
have low r? values, too many outliers, and sometimes
too few datapoints per variable. Nevertheless, we
have found such preliminary attempts to be helpful
in supporting other work and suggesting new options.
Hence, we retained some QSAR that are rather weak.
When one attempts to rationalize in numerical terms
the results from treating even something as simple
as a cell culture (let alone mice) with say 30 or 40
‘congeners’, the problems are mindboggling. Never-
theless, the pharmaceutical industry constantly faces
these challenges. Human DNA codes for 50—100
thousand proteins that account for the many enzymes
and components of various cellular membranes and
organelles. Most biochemical processes are subject to
perturbation. Hence, it is not yet clear what quality
(in terms of r?) one ought to expect with complex
biosystems. However, a rational and statistically
based analysis is vastly better than mere intuition.

Our main premise is that the major interaction
forces to consider in a set of congeners acting on a
biological system are electronic, steric, and hydro-
phobic in nature. Other important factors include
hydrogen bonding, polarizability, and dipole mo-
ments. Hydrogen bonding can be important, but as
yet there is no general way to deal with it in the way
that one can use Pi (), for example, to account for
the hydrophobicity of a substituent. The orientation
and distance between an OH on the substrate or
inhibitor and the bonding site on the receptor is so
critical that a general method for parametrization
appears impossible. In this case, indicator variables
can be helpful.

Graphically, our system can be viewed as in
Scheme 1. Scheme 1 outlines a biodynamic system
that is like an electronic set of two books. One can
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read one book or the other or peruse the chapters as
outlined in Tables 2 and 3 where the headings are
listed (e.g., enzymes) or one can look at the para-
graphs such as oxidoreductases. The difference is
that since paper is not involved, the books can
undergo continuous edition. New additions to the
database occur at a rate of about 80 new QSAR/
month, and yet this is not enough to keep abreast of
the voluminous literature. Our singular approach is
to bring understanding to chemical—biological dy-
namics via a mechanism-based analysis.

The combined database can be searched, or more
commonly, the biological or physical bases can be
searched independently. Then any of the major or
minor subclasses can be sequestered for study. By
means of item 15 in Table 1, QSAR can be isolated
according to the parameters which form their basis.

Two general types of searching are string searching
and searching via 2-D molecular structure. The
objective of this scheme is to focus the output as
narrowly as possible to limit the amount of data that
must be examined. The complexity of the search
engine is the result of the enormous variety of
chemical—chemical and chemical—biological reac-
tions.

lll. Searching the Database

Our search engine operates in three broadly dif-
ferent ways. The first, string searching, is based on
words. The second searches on 2-D molecular formu-
las using the SMILES notation. However, the SMILES
search can be approached in two ways. One can
identify every QSAR that contains a specific mol-
ecule, or else one can use a MERLIN search that
finds all derivatives of a given structure. A third
method searches on parameters, one or more at a
time.

String searching can be utilized in several contexts,
as illustrated with the simple string in (from this
point on direct commands will be entered in bold
letters and underlined) that can be involved in the
following ways.

1 E.coliinmouse asastand (both leading and trailing
alone word blanks) “in”

2 influenza as astart (leading blank, but no
ofaword trailing blank) “ in

3 brain asanend (trailing blank, but no
of word leading blank) in ”

4 pyridine, guinea inside a (neither leading nor
word trailing blanks) in

Searching on in with quotes separated by blanks
would find every instance in the database where it
is a stand-alone word. In the second example with a
leading quote—blank every word in the system start-
ing with in is found. In 3, searching with a trailing
blank—quote locates all words ending with in. In
example 4 with in alone, every possible form of in is
located (2700 hits in the physical bank). String
searching can be helpful when one is not sure how
to spell a name or exactly how the subject of interest
is classified.

A few other examples may be helpful. “HEM” or
HEM matches HEMOGLOBIN but not CHEMO-
THERAPY. “ASE ” matches LYASE but not
L.CASELI.

Hansch et al.

If you ‘quote’ a string but do not include either a
leading or trailing blank, the query is no different
than if you had not included the quotes at all. It is
not required that quotes be matched up before and
after a word. The two examples above could be stated.
“ HEM matches HEMOGLOBIN but not CHEMO-
THERAPY. ASE ” matches LYASE but not L.CASEI.

Any character search can be negated by prefacing
it with NOT. This causes the result to be the reverse
(logical complement) of what it would otherwise be.
NOT CAT does not match CAT, CATCH, CAT-
TAIL. NOT ASE ” does not match LYASE, but does

match L.CASEI. Note that we have underlined the
commands to clarify each entry.

Another feature in our search system is illustrated
by the use of the comma to signify ‘and’. Entering
mouse (space) E. coli would pull together all datasets
where mouse or E. coli occurs. This would, in general,
be pointless. Entering the two as mouse,E. coli first
finds all sets based on mouse and then separates
those that also have E. coli (i.e., E. coli interacting
with mice).

An alternative means for searching is based on the
SMILES language invented by David Weininger®-2!
and incorporated into our developing system while
he was a member of the Pomona College MedChem
Project. SMILES coupled with DEPICT was a truly
outstanding advancement, since it constituted an
unambiguous language for naming organic chemicals
and displaying them in 2-D. SMILES allows one to
use a line notation to enter two-dimensional struc-
tures into the computer, each in a unique format. We
have now entered the SMILES for many compounds
with unambiguous names such as benzoic acid or
quinine so that input of a name results in the
generation of the related SMILES for searches.

Two means are present for doing such searching.
For example, one can enter phenol and find every
data set that contains phenol. In so doing, we find
307 QSAR in the physical database that contain
phenol. Many of these are mixtures of phenols and
other compounds that researchers have used to
formulate a single equation. Using the command 3
not miscellaneous (see Table 1) reduces the num-
ber to 255. Unfortunately not all sets of mixtures
were labeled as such, so further refinements are in
order.

A searching program, also using the SMILES
notation, is called MERLIN and was also invented
by D. Weininger. Entering the SMILES for phenol
into MERLIN using the command 13 in the search
mode finds all derivatives of phenol in which substi-
tution occurs at any or all of its six hydrogen atoms.
This will find, for example, anisole and pentachlo-
rophenol, among many other structures. This locates
4355 QSAR. The biological database contains the
common names as well as the official names of over
10 000 drugs, currently on the market, discontinued,
or interesting but not yet on the market. This means
that one can do a MERLIN search on any one of these
compounds to uncover QSAR on similar chemicals.
The common names of many simple compounds are
also stored, and their SMILES can also be generated
by entering the name. Using command 13 p-ami-
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Table 5.
hits hits
SMILES mescaline 5 SMILES testosterone 19
MERLIN mescaline 22 MERLIN testosterone 39
SMILES epinephrine 12 SMILES phenoxyacetic acid 7
MERLIN epinephrine 19 MERLIN phenoxyacetic acid 67
SMILES naproxen 8 SMILES isoniazid 4
MERLIN naproxen 9 MERLIN isoniazid 10
SMILES methotrexate 13 SMILES adamantane 0
MERLIN methotrexate 15 MERLIN adamantane 70
SMILES hexobarbital 21 SMILES glucose 5
MERLIN hexobarbital 21 MERLIN glucose 38
MERLIN [Pt] 7 SMILES cortisone 13
MERLIN [Se] 19 MERLIN cortisone 13

nobenzoic acid finds 265 QSAR that contain this
compound or a derivative of it where any H atom has
been replaced by some other element. The biological
database can be searched with SMILES using 12
from the search mode name or MERLIN using 13.
Some examples follow.In the examples of Pt and Se,
only a MERLIN-type search is possible since no
QSAR have been reported for the bare metals. This
yields all compounds that contain such an element.
It is interesting that adamantane itself has never
been tested, but after the discovery of the antiviral
activity of aminoadamantane, there was a wild flurry
of testing derivatives of adamantane or using it as a
substituent. In the case of cortisone, it was surprising
to find no ‘similar’ compounds. The large number of
hits with phenoxyacetic acid is due to the great
interest in these chemicals as weed Kkillers. In fact,
QSAR was developed out of interest in this class of
chemicals.?

[V. Parameters

The choice of parameters is of the utmost impor-
tance in the construction of a bioinformatics system
where the ultimate objective is comparative QSAR.
Table 4 lists some of the parameters that at present
can be automatically loaded for QSAR calculations.
S stands for Hammett sigma o; -P and -M stand for
para and meta values, respectively. In the broader
sense para values are used for aromatic substituents
conjugated with the reaction center and meta values
for nonconjugated aromatic systems. The Hammett-
type parameters (o, ot, 07, o* (s-star), and o (s-
inductive) have received over half a century of study
and testing on simple organic reaction mechanisms.
Their use in formulating biological QSAR has been
discussed, and a listing of published values has been
made.® The field/inductive (F) and resonance param-
eters (R) have also been reviewed.?> Molecular orbital
parameters continue to be explored for use in both
biological and physical QSAR since there are many
instances where Hammett constants cannot be
used.z~%8 Searching the biological database with 15
HOMO LUMO finds 59 such QSAR. Some represen-
tative examples are in refs 24—68. Searching with
10 HOMO LUMO finds every instance where HOMO
or LUMO was tested (i.e., 120). This figure less 59
shows that in 61 of the examples, the molecular
orbital parameters were tested but found to be not
as sound as Hammett constants. However, this

statistic must be considered with caution since not
all calculations were made with some of the more
rigorous computational programs now available.

Parameters 19—26 in Table 4 are of special interest
to us as they have been specifically designed to
correlate radical reactions.® The study of radical
reactions is particularly fascinating. In living systems
the effect of free radicals can be either useful or
detrimental. That is, they can be carcinogenic, es-
trogenic, or valuable antioxidants, as in the case of
flavonoids.8® Er was designed by Yamamoto and
Otsu,8! S. Dot by Dust and Aronald,?? S.-Dot 22 by
Jiang and Ji,®3 and S.C. by Creary et al.®* There is a
good correlation between Eg and Creary’s parameter,
but we have generally used Er because of a better
selection of substituents. However, one must always
check o". In general, we have found o* to be most
useful in correlating radical reactions, but there are
instances where Er or the other radical parameters
are necessary. As yet it is not clear why there is poor
correlation between o and the specially designed
radical parameters, but it seems likely that the
nature of the reaction transition states must be the
critical factor.

The crucial parameter for the initial success of the
biological QSAR paradigm! was the numerical ac-
counting for hydrophobic interactions. Despite the
great complexity of studies of all types of chemicals
reacting with various kinds of biological systems
(from DNA to whole animals), the octanol/water
partition coefficient used in log terms provides sur-
prising insights. It must be remembered that a
compound entering a cell has a very large number of
possible hydrophobic interactions besides those with
a crucial receptor of interest. Most interesting are
examples where no hydrophobic term appears even
in whole animal studies.® The hydrophobic parameter
for substituents (Pi)? can be of great assistance in
delineating local hydrophobic interactions at the
receptor level.? However, this parameter can be
greatly affected by strong electron-attracting ele-
ments in close proximity. We have recently modified
our system to calculate Pi values taking into account
neighboring electronic effects.

Partition coefficients are rarely measured these
days since this is a rather costly and time-intensive
process. The use of data from the literature to
formulate QSAR means that the compounds are not
usually available for the measurement of their parti-
tion coefficients. In our set of 8500 QSAR, 4614
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contain log P terms and 784 have Pi terms; hence, it
is very important to have the best possible means for
their calculations. There are now a wide variety of
methods for the calculation of log P.”* The most
extensively supported method is that of Leo.”>"? The
quality of his method is illustrated by eq 1.7

log P = 0.96(+0.003)Clog P + 0.08(0.008)
n= 12,107, r* = 0.973, s = 0.299 1)

This expression shows the relationship between
12 107 experimental and calculated (Clog P) values.
Leo’'s program using SMILES or names as input
calculates values on modern desktop machines at a
rate of about 100/s. Our program calculates and
automatically loads the parameters log P and Pi for
regression analysis.

Steric parameters are the third cornerstone for
QSAR formulation. The classic Es constant of Taft
has been reviewed,’ its use illustrated? and experi-
mental values listed.® Es was designed for modeling
intramolecular steric effects,”* but sometimes it is
helpful for intermolecular interactions. The calcu-
lated sterimol parameters of Verloop and Tipker™ are
generally much more useful and can be easily com-
puted. Values for over a thousand different substit-
uents have been published.® Originally five param-
eters were suggested as descriptors of a substituent,
but then it was determined that three were just as
effective: B1, B5, and L. B1 is essentially a measure
of the size of the first atom in the substituent, and
B5 is an attempt to define the effective volume, while
L is a measure of the substituent length. Despite the
simple nature of these terms, we have found them
to be valuable in QSAR formulation. There are 907
examples where B1 has been used, 728 for B5, and
104 for L in the biological database.

Molar refractivity (MR) is a parameter first pro-
posed for biological SAR by Pauling and Pressman’®
and then further developed by Agin et al.”” It is
defined as follows

MR = (n? — 1/n?+ 2)('\’:1—\’\’)

In this expression n is the refractive index, MW is
the molecular weight, and d represents density. If
refractive index does not vary greatly, MR is heavily
dependent on molecular volume. Despite this strong
association, it has been found to be superior to
calculated molecular volume in QSAR formulations.
2553 QSAR are based on CMR for the whole molecule
or MR for substituents, while there are only 422
based on molecular volume. The refractive index does
incorporate a term for polarizability, which is direc-
tionally dependent on the position of the force causing
the electrons to move.”® Some of the limitations of
this parameter have been discussed.? Despite these
shortcomings, we have found many instances where
it gives results superior to molecular volume. A
recent most interesting discovery is that it can be
used to delineate allosteric effects in enzymes and
receptors.”
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Some useful general searches of the literature can
be illustrated by command 5 in Table 1 on references.
To get some idea of the source of the original physical
data, the following command can be used.

1 5 J.Am.Chem.Soc. 1750 hits
2 5 J.Chem.Soc. 1541 hits
3 5 Indian 339 hits
4 5 Zh.Org.Khim 363 hits
5 5 Organic Reactivity 366 hits
6 5 J.0rg.Chem. 1111 hits

To determine the major contributors in the field of
mechanistic organic chemistry, the combined data-
bases can be searched in the following manner.

5 Bowden,K. 134 QSAR 5 Taft,R.W. 56 QSAR
5 Bordwell,F.G. 128 QSAR 5 Grob,C.A. 48 QSAR
5 Lee,l. 164 QSAR 5 Kabachnik,M.l. 44 QSAR
5 Brown,H.C. 89 QSAR 5 Exner,O. 51 QSAR
5 Tsuno,Y. 160 QSAR 5 Jencks,W.P. 95 QSAR

V. Mechanistic Organic Chemistry

Work with the Hammett equations and its exten-
sions illustrates what is happening in all areas of
science. The first and last attempt to list all such
equations was made by Jaffe in 1953.8% This was the
most cited paper in Chemical Reviews in the period
1945—-1995.86 The second most cited paper in this
period was that by Leo et al. on partition coefficients
and their uses.?” These two seminal works cover two
of the three cornerstones of QSAR (the third being
steric). There are a number of books that have been
written on the Hammett equations and their use of
which two are most useful.8:8°

A good place to start with informatics is to use the
search mode for Hammett parameters in the study
of the ionization of organic compounds. Searching our
physical database with 2 * P1 ” (where 2 represents
field (Table 1) and P1 the subset in Table 3), we find
1618 QSAR. Note that quotation marks enclose
leading and trailing blanks on P1, otherwise we
would have found, via string searching, information
on P12, P13, etc. Next, moving to the show mode,
we can review any or all of the information in Table
1. In general, one would not want to page through
all of the possibilities, but it could be done in less
than an hour. A quicker review would entail a search
on 1 and 3 of Table 1 to see the type of compound
and solvent covered by each QSAR. The set number
is shown so that all of the information in Tables 1
and 3 and the 2-D structures of all compounds can
be viewed by entering the set number.

Usually one would want to review QSAR in a single
solvent system. Searching with 1 aqueous finds
1165 sets. This includes many examples where mixed
solvents were used. In such examples, a percent is
always present, e.g., agueous 50% ethanol. Hence,
entering not % reduces the hits to 588 sets based on
water alone. Most studies have been published in
terms of pK, or ionization constants used as the
dependent variable. The former can be isolated by
searching the 588 by the command 15 pK,, which
yields 491 sets. The search for any particular solvent
can be illustrated by searching the 1618 with the
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command 1 Ethanol Not %, which finds only 80
examples in ethanol (sometimes 95% ethanol).

Again, returning to the 1618 sets, one can look for
work by a particular author by using the command
5 authors name. For instance, using Jencks,
locates 13 studies by the noted biochemist W. P.
Jencks. Other aspects of reference can be searched.
One might want to look for recent studies on ioniza-
tion that might cover more complex chemicals. En-
tering 5 (1990) (1991) (1992) (1993) (1994) (1995)
and then searching on 2 * P1 ” uncovers 117 of the
1618 examples. These can then be perused in the
show mode. Perusing the catch by compound one
uses 3 (Table 1) in the show mode and finds an
unusual study on capsaicin analogues. It must be
noted that some examples are present where the
same compound is listed in a series of several sets
(e.g., phenylformamidines). In such instances it is
usually found that the same set of compounds has
been studied in several different solvents or solvent
mixtures.

In some cases pK, has been employed as an
independent variable. These can be separated by
searching with the entry 15 pK,, logk. First all sets
with pK, are isolated, and then those containing a
log k term are pulled in. This yields 88 examples
where the ionization constant log k is the dependent
variable (left side of equation) and pK, is the inde-
pendent variable. It can be of interest to search for
compounds having aqueous pK, values within a
certain range. This can be done using the physical
database as follows.

1 15 PKa 1515
2 15 not logK 1433
3 1 aqueous 1057
4 1 not % 505
5 14 10<pK,<12 10

Command 5 isolates any sets having a compound
with a pK, value between 10 and 12. The following
examples are illustrative of our catch.

pKarange 10.46 to 11.17 pKa range 10.23 to 10.60

N+
HOSe—Q—X x—~ >—SOzCHz—</:>N—CH3

pKa range 10.17 to 10.84 pKarange 10.01 to 11.68

Now in a search for stronger acids we can change
step 5 to 14 2<pK,<3, which gets 15 hits, among

which are
H
X AN
x—@—ooomHsosMe m
COOH:
pKarange 1.27 t0 2.03

pKarange 1.53 to 2.22

Note that in each example a QSAR is available
from which hundreds of other pK, values can be

Chemical Reviews, 2002, Vol. 102, No. 3 791

calculated. Another approach is to search over a
wider range and ask for a relatively large group of
congeners. By changing step 5 to 14 0<pK,<6 and
then n >10 snags 57 hits on sets having 11 or more
data points, and 4 of interest might be

Ha
//:\>_ “/N\?H2 )@KCOOH
c
- _ I-KS/CHZ F NHp
pKa range 4.55 to 5.50 pKa range 0.65 to 2.72
X

N/ | = | ‘
g% X s” “cooH
N

pKa range 2.38 t0 4.75 pKa range 2.78 to 3.78

There are 88 QSAR in the biological database
where pK, is the independent variable.

H

C C l N
HO []
CHy CHy X l | |

3

X
pKa range 0.86 to 10.36 pKa range 3.7 t0 9.3
H
Oy NS
- )
- | s HN
x
N 0
pKa range 0 to 9.95 pKarange 5.3 to 10.0

Data mining, the buzzword these days, is used to
search huge sets of chemicals for various types of
structures or properties. Our approach can be termed
model mining, because behind every hit stands a
QSAR that predicts the activity of many untested
compounds.

There are two mechanisms for searching using the
SMILES descriptor. Using the 1618 sets on ionization
and the command 12 asks for the entry of a SMILES.
Entering quinoline the program supplies the
SMILES and searching yields seven sets in which the
QSAR is based on quinolines and one set of miscel-
laneous chemicals that contain quinoline. A general
similarity search using MERLIN finds every example
in which the quinoline moiety is present or a deriva-
tive in which one or more H atom has been substi-
tuted. Searching on 13 and quinoline finds all such
sets (20 examples) such as styrlquinolines, acridines,
qguinolones, and phenanthrolines. This type of search
can yield a huge number of examples. Searching on
CH3CH,0OH uncovers 4398 sets. This number can be
reduced by searching as follows.

2 B4 1133 hits  cells
5 ¢ 27 hits QSAR that contain a o* terms
15 Es 22 hits  QSAR that contain an Es term

The third way of model mining is to search via
parameters. Again starting with the 1618 sets and
using the command 15 not logK eliminates QSAR
based on ionization constants and isolates 1528
examples where pKj, is the dependent variable. In
checking for examples where through resonance is
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important, we can use the command 15 S+ S—,
which then isolates 635 QSAR based on ¢* or o—. Or
we might be interested in electronic effects in ali-
phatic systems. Searching with 15 S’ Sl locates 199
possibilities.

Another way to mine the database that can be of
interest is to find instances where certain substitu-
ents have been studied. Searching with 11 Me CH3
methyl finds 7788 out of 8400 studies including a
methyl group. Using 11 CF3 finds 1036 instances,
11 SO2CF3 uncovers only 34 examples, and using
11 SF5 locates 9 examples. More complex multisub-
stitution can also be uncovered, e.g., 11 2-NH2
0-NH2 finds 65 examples.

Even in the formulation of the relatively simple
QSAR for organic reactions one finds it necessary to
omit data points. In our system this is done by
marking them with an asterisk (starred points). Such
points are held in place and always shown when a
listing of results is asked for so that they cannot be
forgotten. These can be isolated and evaluated. For
example, 2 P12 collects all QSAR on radical reactions
(596). 18 omit>0 separates all QSAR with one or
more data points starred (240). Moving from search
to show and entering 11 lists all substituents for each
example to see which ones are poorly fit as well as
those that are well fit. The p-methoxy and nitro
groups are often outliers.

So far we have only considered the subject of
ionization that is by far the simplest of the examples
in Table 3. The same search strategy can be applied
to the other classes. A well-studied subject for physi-
cal organic chemists has involved nucleophilic sub-
stitution reactions. The search 2 P6N locates 1146
examples. Remember 2 is from Table 1 and P6N is
from Table 3. To check recent activity in this field
we can use 5 (1995) (1996) (1997) (1998) (1999).
This garners 107 hits showing that there is still
considerable interest in this area. Similarly searching
using 13 pyridine on the 1146 examples yields 93
hits. This of course finds many examples with pyri-
dine as the nucleophile, but in addition we uncover
more complex structures such as quinolines, acridines,
and pyridinium ions. One can peruse the 1146 hits
with commands 3 and 4 to find interesting examples
for comparative studies that can be similarly searched.
Using 13 NH2NH2 uncovers 33 examples for a wide
variety of derivatives such as X—CgHsNNO, X—CgHy-
CONHNHg,. There is so much variation in the re-
agents and substrates that one would need to page
through the 1146 examples to understand all that
has been done. This review of the literature could be
accomplished in less than an hour, which is much
less time than that devoted to many narrow library
searches.

In dealing with over a thousand hits, another level
of organization can be attained by organizing the
output in terms of the coefficients with any given
parameter as follows.

1 2 P6N
2 15S—

1,146 hits
221 hits

Hansch et al.

Moving to the show mode and entering

3 [sort=161341516 18
4 sort S—

Command 3 says sort on slope coefficient (Table 1)
and give information covered by some of the items
of 1—-18 in Table 1. On entering step 3 the program
asks for the parameter to be sorted on (enter S—).
The program then lists QSAR in terms of the coef-
ficients with o~ going from —6.9 to +8.5. The most
negative slope (Hammett's rho value) is for the
classical SNAr reaction.

I NO»

O,N NO,
X-CgHaNH,  + ——— O, NHCgH X

NO2 NO»
The most positive slope is associated with
X-C¢H,Cl + C¢H;SS™ — X-C4H,SSCH;

Rho values can also be examined by isolating
datasets by using narrower ranges e.g., all negative
or all positive coefficients or those coefficients with
an intermediate range such as —0.5 to +0.5.

The same approach might be applied to radical
reactions. Searching on 2 P12 finds 596 examples.
Focusing this set with 15 S+ finds 310 correlated by
o', while searching with ¢~ yields 63. The quality of
8500 QSAR can be examined in a variety of ways by
means of the statistics search 18 (Table 1) as follows.

1 18

2 18 n>75

3 18  r>.99

204 hits—isolates all QSAR
having 3 terms

5 hits—isolates QSAR based
on more than 75 datapoints
2 hits—selects QSAR with r
greater than 0.99

2<terms<4

Until rather recently, practitioners of physical or-
ganic chemistry rarely used more than two terms to
rationalize their results, but faster and more efficient
computers have changed the scene. As seen from the
above example, the database contains 204 QSAR with
three terms. Step 2 shows that some of these are
based on large data sets containing a substantial
number of data points with high-quality data. The
following is an example of the result that we have
derived from published data.®

Y—CgH,(CH,),NHCgH,~X + Z—C,H,SO,”

log k, = —1.32(%0.05)0y — 0.13(£0.02)0", +
1.08(+0.03)0, — 3.93(+0.01)

n =80, r*=0.992, s =0.042, ¢° = 0.991 (2)

The subsections of Table 3 are of the type that a
physical organic chemist would be comfortable using.
Searching by common reaction names can often be
very helpful; for example, searching under action 4
isolates the following number of hits.
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search command hits

DIELS 42 Diels—Alder reactions
Friedel 3 Friedel Craft reactions
Cyclization 32

Mercuration 11

Salt 23 salt formation

Alkyl 31 alkylation

Decomp 109 decomposition reactions
Wolf 6 Wolf—Kishner reductions
Dipole 14 dipole moments
Decarboxyl 27 decarboxylation reactions
Racemi 2 racemization reactions
Meerwein 1 Meerwein—Pondorf reduction
Bromi 179 reactions with bromine
Hydration 40 hydration reactions

Many of these QSAR come from P5 Table 3 for
miscellaneous reactions.

VI. Chemical—-Biological Interactions

Most of the general approaches to model mining
that we have considered in mechanistic organic
chemistry can be used with chemical—biological
interactions. However, organizing biological QSAR is
a vastly more difficult problem. The same major
preliminary search mechanisms are available (string,
SMILES, MERLIN, and parameter). Before or after
factoring, as shown in Table 2, can be utilized to
further focus the output. The major difficulty is that
there is no simple way to categorize the system
names or the types of actions. For example 2 B2A
isolates 716 sets and QSAR on oxidoreductases of all
types. There is no uniform way to break this into
smaller groups. By moving to show one can scan the
names in less than 10 min and then sequester the
ones of interest. The following are a few examples.

system name number of hits

Cytochrome P450 P-450 63
Dehydrogenase 129
Microsome 19
Hydroxylase 25
Mitochondria 43
Monoamine 57
Dihydrofolate 95
Liver 170
Lipoxygenase 30
Peroxidase 36
Xanthine 18
Cyclooxygenase 51

These 12 examples illustrate some of the possibilities.
Searching with cytochrome P450 or P-450 yields 63
examples. Sometimes P450 or P-450 have been used
to characterize the system. There are many QSAR
on dihydrofolate reductase, an area our laboratory
has been working in for many years.

Comparing new QSAR from the biological database
we have possibilities available that are not present
with the physical database where we have not
attempted to standardize the dependent variables.
In the biological QSAR log 1/C is in molar terms
except in a few cases marked by log 1/C'. The
following approach is illustrative.
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1 15 * logl/C " 4807 hits
2 15 not **2 bilin 3546 hits
3 15“1ogP ” “ ClogP " 1738 hits
4 15 not “S 1435 hits
5 15 not ES B1 B5 MR Pi PKA 1127 hits
6 16 0.6<logP<1 481 hits
7 16 0<const<0.5 52 hits

The first step ensures that 1/C values are standard.
The second eliminates all QSAR with nonlinear
terms, and the third ensures that we have only
octanol/water log P values. Searches 4 and 5 elimi-
nate parameters other than log P. Step 6 selects only
those QSAR where the coefficient with log P is
between 0.6 and 1.0, and 7 eliminates QSAR whose
intercept is outside of 0 and 0.5. The very weak
activity (intercept 0—0.5) of the 52 QSAR in terms
of slopes of compounds and biological activity is
shown in the following examples: 15, of synapto-
somes, guinea pig cerebral cortex by ROH; Iso of
chloroplasts by X—CsH4sNHCOCH(CHs),; Inhibition
of cholinesterase from electric eel by FCH,COOR;
Inhibition of microorganisms in pharmaceutical cream
by 4-OH—-CsH4CO,R; Hemolysis of red cells from
Rabbits by ROH; 75% blockage cockroach nerve
action by ROH; Inhibition of valinomycin induced
potassium uptake by liver mitochondria by X—CgHy-
CH,CH,N(C3Hbs),; Iso of Chinese hamster lung fibro-
blast cells by halobenzenes.

Note that of the above example, a number pertain
to simple alcohols. Scores of such studies have been
reported, and an extensive review of this work has
been published.®! For the most part, these constitute
examples of nonspecific types of toxicity.

Now considering toxicity 100 times greater, we
replace command 7 above with 16 2 <const<2.5 and
obtain 48 hits for chemicals 100 times as potent.
Examples are as follows: |5, of Algae by X—CgHs and
X—CsH4OH; 5o of bluegill fish by chlorophenols; Isq
of acetylcholinesterase by physostigmine analogues;
Uncoupling of phosphorylation in isolated thylakoids
by X—CsHsNHCONH..

Many of these examples are based on phenols. We
see that moving the OH from an alkyl to an aryl
carbon increases the potency by 100-fold.

Now increasing 1000-fold over our first search by
16 3.0<const<3.5, we uncover 16 examples among
which are the following.

Iso of Human Polymorphonuclear Leukocytes by

oo
CHZNH—@X

Isp to inhibit HIV-1-induced cytopathicity to MT-4
cells by

Hi. R

@[ﬂ(

[CHCHy
HN\H\l_CHz
o}
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Iso of binding of [H®] Naloxone rat brain opiate

receptors by

COOC,Hs

Iso of HMG-CoA reductase by

OH

)}_\ CH=CH—Q

o

One must bear in mind that the value of the
intercept will depend in part on the sensitivity and
specificity of the test system and the toxicity of the
chemicals.

Moving up another factor of 10 with 16 4.0<const
<4.5 isolates 29 examples. The following again il-
lustrates the wide range of chemicals and test
systems in the database.

Inhibition of mitochondria succinate dehydroge-

nase by®?
F
3CT——='—CONH06H4—X
Ne S
Y

Cl

Concentration of needed for a 5-fold increase in

fHs

OuNHCH,CHNHCH=CHR
—d
Ny

vinblastine accumulation in P388 cancer cells.%

Isp of X—CsH,CONHOH to 5-lipoxygenase of red
cells.?4

One can search for more complex QSAR as follows.

15 logP 4414 hits
15 not **2 bilin P1 3089 hits
15 S+ 90 hits
16 .6<logP<1 17 hits
16 —2<S+<0 9 hits

The following are selected from the nine hits.
Iso sheep vesicle prostaglandin cyclooxygenase by
phenols®®

log 1/C = —1.71(£0.25)0" +
0.69(+0.12)Clog P + 1.80(+0.32)

n=25,r>=0.933,s=0.186,q°=0.910 (3)

Acetyltransferase transfer of the acyl group from
p-nitrophenylacetate to X—CgHsNH,%

log V.. /K = —1.25(+0.46)c" +

max m

0.89(+0.46)log P -+ 0.65(-:0.31)Es, + 1.3(£0.74)

n =10, r> = 0.907, s = 0.243,q* = 0.787 (4)

The positive Es term means that meta substituents
are inhibitory since values of Es are negative.

Hansch et al.

Iso prostaglandin synthase by phenols®#

log 1/C = —1.08(£0.40)0" +
0.74(+0.33)Clog P + 1.23(+0.70)

n=7r>=0.939,s=0.132g°=0.974 (5)

The action classification presents the same dif-
ficulty. For example, isolating cell studies with 2 B4
we obtain 2078 QSAR for all kinds of cells. To get
some idea of what has been studied, enter show
followed by 1 4. Now we can page through the 2078
sets in 30 min to get some idea of what has been
done. Returning to search and using 2 B4, we can
search on the following terms.

system name hits
1 hepatocyte 5
1 coli 101
1 HIV 150
1 caco 8
1 Aureus 119
1 Fungi 68
1 red Erythrocyte 85
1 Niger 25
1 Typhimurium 39
1 Diphtheria 6

One needs to inspect the sequestered data since there
can be some misleading information. In the search
for coli, one set is for E. coli topoisomerase. In the
case of the aureus search, one obtains mostly data
on S. aureus but a few examples are for M. aureus.
In the instance of the fungi search, checking the
output we find three examples on wood destroying
fungi. It would be suggested that this would be better
entered under plants, but few would think to look
for it there!

Next searching on action (4), we find the following
examples.

system name hits
4 Pen Perm (cell penetration) 25
4 Hemolysis 51
4 Narcosis 13
4 150 172
4 Kill 128
4 Tnh 1058
4 Mutagenesis 23
4 Luminescence 16
4 Cytolysis 2
4 oxidative, phosphorylation 6

Hydrophobicity is important in 62% of the examples.
What is even more remarkable is it's absence in so
many examples.® Next moving to a subsection of cells
B4C, we can scan 710 sets for work with cancer cells.

system name hits type
1 Chinese CHO 40 Chinese hamster ovary
1 Tumor 20 Misc. tumor cells
1 Ascites 7
1 Leukemia 41
1 Hela 14
1 ovarian 123 human cells
1 colon 24 human
1 Myeloma 4
1 Prostate 5 human

Considering multicellular organisms (B6), we can
illustrate subsection searching as follows on the 1350



Chem-Bioinformatics

QSAR in this class.

system name hits type
1 mouse mice 289
1 Tcat” 17
1  Dog 17
1 Frog 7
1 Rabbit 53
1 Tadpole 30
1 Guineapig 278
1 Not Guinea 22 isolates pig and pig parts
1 Fly 60 variety of flies
1 cockroach 29 including nerve chords
1 Goldfish 12

Again we find that judicious thought must be used
in entering the appropriate search commands. One
always needs to inspect ones hits to be sure that
unwanted data is not isolated. Further refinements
of the search strategy are needed to minimize com-
plexity yet increase recoverability and accuracy. In
the case of cat, if we do not use quotes we obtain data
on catfish. Searching on 1 guinea pig isolates 17
examples on guinea pigs. In the case of a cockroach
search, inspection of the results will disclose ex-
amples on both whole insect studies and isolated
receptors (inhibition of nerve chord of cockroaches).
Using parameters as the searching tool can be
helpful in getting lateral support for a newly devel-
oped QSAR. The following three examples illustrate
esoteric kinds of studies that have been reported.

1 15— 282
2 2B6 39
3 16 0<S—<3 32

The first step isolates all examples in the biological
database having a o~ term. The second narrows the
focus to multicellular organisms; the third isolates
all those having a positive coefficient with ¢~ in the
range of 0—3. Some examples are as follows.

Concentration of X—CgHs—NH,; inhibiting root
elongation of cabbage seeds®®

log 1/C = 0.44(+0.12)6™ +
0.69(20.10)Clog P + 2.10(:£0.18)

n=7,r>=0.991,s=0.052 g°=0.965 (6)

Catalytic activity in generating NO from nitroglyc-
erin by X—CgH;SH®

log k = 1.18(+0.68)c" +
0.80(£0.75)1 — 9.18(+0.35)

n=28,r>=0.941,s=0.265,¢q°=0.840 | =
1 for X = COOH (7)

Iso of growth of pollen tubes in tobacco plants by
X—CgHs—NO,%
log 1/C = 0.85(+0.23)0 + 2.85(+0.43)
n=8, r’=0.932, s = 0.160, g° = 0.869
outliers: 2,3,6-tri-NO,, 2,4,6-tri-NO,, (8)
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Turning now to a MERLIN search, we can use the
furan nucleus to illustrate a structural approach to
model mining. It must be noted that the furan unit
may be present as a side chain attachment in only
one or two members of the set. The hits should be
inspected by first screening the 222 sets uncovered
by the MERLIN search and then going to the show
mode and scanning 3 and 4 for activity and compound
name. One can then take the set number of interest
and display the 2-D structures. Some representative
examples follow.

R
z S I ! NH—I\(
X'—\ | | /—Y =0

o ON" O N

. O
Displacement of tetrachloro

dioxin from protein Inhibition of E. coli growth

?H
?HCHZOH

,CH o}
cv/

?
CCH20H2—©U
OH (o)

Increase in urinary glucose
excretion in rats

"oy

HO'

CH ?Hzl
JeoH | —x

Binding to muscarinic receptor
in guinea pig cerebral cortex

Keep in mind that behind each structure there is
a QSAR that can be loaded for suggestions to make
more active congeners or avoid making less potent
or toxic derivatives.

Similarly searching on produces 550 hits. Reducing

N NH

this by 2 B5 (organs and tissues) yields 106 ex-
amples. Perusing this in the show mode with 1 3 4
we can view the system, compound, and action where
we note a large number of examples related to the
brain. Searching with 1 brain cerebral isolates 29
QSAR of which the following are examples.

[ e .
HOCH,CHz— NY N <\:I(

N
CHy Z

Y
I, of specific binding of [H’]
Diazepam torat brain benzodiazepine
receptor

So Ty

Inhibition of H*-N-2-methylhistamine
binding to rat cortex

One example of radio labelled
heterocycles. Rat brain capillary
permeability coefficient

R
K, affinity for Al-receptor of
cerebral cortex of guinea pig

Another example of the huge number of possibili-
ties is similarity searching on CsHsCH=CHCsHs that
gets 79 hits of which the following are interesting.
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O*‘/SOZNHZ or SO,CH3
{FCQ

I, Human COX-2 enzyme
Y

Estrogenic activity in rat

Y O
— A\ c._
Relative afflruty for the Estrogen
receptor from rat uterine cytosol

Inhibition of Tublin Polymerization
from bovine brain

To explore the area of insecticides, use command
2 B6B to get 196 sets. Then 13 urea isolates 17 sets
from which the following two examples were selected.

frs
—G—COOMe

g,

Minimum Lethal Dose (MLD)
for American cockroaches

E

LEOY
X—CGHS—NHCN HC

F

50% Decrease in adult emergence in
Yellow Fever mosquito

Optimal Hydrophobicity. Up to this point we
have avoided consideration of QSAR with nonlinear
terms. These often may be of primary interest. They
appear in two forms: parabolic (e.g., a(log P) — b(log
P)?) or the bilinear model in which activity normally
increases linearly up to an optimum and then de-
scends linearly or levels off. These are obtained via
nonlinear regression analysis. Neither set of terms
is an ideal solution. The parabola forces data into a
symmetrical relationship, and it is often apparent
that the relationships are not perfectly symmetrical.
The most unsatisfactory aspect of the parabola in
terms of comparative QSAR is that the slopes are not
comparable with linear QSAR. In principle, the
bilinear form is ideal in that the initial (upward)
slopes can be compared with linear QSAR. Moreover,
it is often found that an increase in hydrophobicity
increases activity only up to a certain point which
then levels off. This is especially true for enzymes
where hydrophobic space may be limited. A serious
problem with the bilinear terms is that unless there
is a good spread in values of the dependent variable,
the slopes have completely unrealistic values. Gener-
ally, this is easy to spot for someone who has had
experience in the QSAR field. For instance, it is
known that slopes of log P and =z in simple linear
equations rarely exceed 41.2.% Despite the unrealistic
slopes, the estimates of the optimum value are
usually good when they can be compared with that
obtained via the parabolic QSAR.
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To search the database for compounds having log
Po, use the following commands:

1 15 logP 4123 hits
2 15 logP**2 bilin(logP) bilin(ClogP) 1026 hits
3 17 1.5<logP=<25 101 hits

In step 2, log **2 represents log P2. Command 3
narrows the catch to log Po values between 1.5 and
2.5. To inspect the results, we move to show and
enter 17. For parabolic equations, log P is  displayed
with its confidence limits, when it is possible to
calculate them.

One of the advantages of the parabolic model is
that an estimate of log P, can be obtained without
having datapoints on the down side of the curve,
which is necessary to derive the bilinear model.
Further information on these QSAR can be obtained
using the usual codes. 1 3 4 17 displays system,
compound, action, and log Po. It is instructive to
compare log Po for QSAR on cells with that on whole
animals. Entering 2 B4 finds 2063 QSAR on all types
of cells. Then 15 logP**2 bilin(logP) bilin(ClogP)
isolates 295 cases where log Po is established. Moving
to show and entering 3 17 and surveying the results,
we find that charged compounds (quaternary am-
monium and guanidinium analogues) have distinctly
lower log Po . When these and those without good
confidence limits as well as partially ionized acids
and bases are omitted, the remaining sets have an
average log Po of about 4.3. Repeating the process
for vertebrates using 2 B6A locates 179 examples
with an average log Po of about 2.8. This is signifi-
cantly lower than the value for cells. We believe the
difference is due to entrapment of hydrophobic chemi-
cals in the fatty sites in animals (compared to cells)
and also to P-450 metabolism (there is evidence that
hydrophobic compounds induce P-450, ref 2, p 313).
log Po can be a measure of optimum bioavailability.
We have found that log Po of about 2 is ideal for CNS
penetration by neutral compounds.®® This figure
could be shifted up or down depending on the nature
of the receptor and any special metabolic liability. It
is our belief that it is prudent to make drugs as
hydrophilic as possible commensurate with efficacy.%
Of course, ascertaining exactly what efficacy is in
humans is by no means simple. Short-term use is one
problem, but long-term use is quite another. This is
especially true today when a person may be depend-
ent on one or more drugs for a decade or even longer.
The trend to do the screening of potential drugs on
cells, rather than animals, makes selection for animal
studies difficult. We believe that QSAR will gradually
increase our ability to anticipate toxic molecular
configurations.?”

VII. Model Mining for Active Lead Compounds

A major challenge in the development of new
bioactive compounds is that of finding a promising
lead molecule. Sometimes luck plays an important
role. The drug Viagra for erectile dysfunction was
stumbled upon during the development of a heart
drug. Thalidomide, a drug that caused terrible birth
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defects in children in pregnant women, now shows
real promise in the treatment of leprosy. Cisplatin,
which emerged from a study on the effects of an
electric field on growing bacteria, is one of the most
successful albeit toxic anticancer agents. Nalidixic
acid, a mediocre antibiotic, was converted into the
first of the fabulous quinolone carboxylates (floxins)
with the help of QSAR.1 “Me too” drugs are the bane
of every drug company. Once a potential drug starts
showing promise in the FDA phase 1111 trials, all
efforts increase in attempts to find more effective
variations. On the other hand, scores of drugs have
been found by random screening of extracts from
plants and simple organisms.

Once a lead compound has been selected, there are
two options. One can proceed with combinatorial
synthesis or the use of classical QSAR to optimize
activity and minimize toxicity. With the combinato-
rial approach, at some point QSAR and/or structure-
based design will be necessary to maximize activity
and avoid toxicity and vice versa with the initial
QSAR approach.

With our present system there are two approaches
for looking for new leads. One can look for highly
active compounds by the search

14 log1l/C>n or 14 log@max>n

The first finds all sets in which every compound
that has a log 1/C of n or greater. The second finds
those sets in which at least one compound has a log
1/C of n or greater. The possibilities in our present
biological database are as follows.

1 14 logl/C>9 8 hits
2 14 logl/C@max>9 317 hits
3 14 logl/C>8 29 hits
4 14 logl/C@max>8 890 hits
5 14 logl/C>7 163 hits
6 14 logl/C@max>7 1670 hits
7 14 logl/C>6 563 hits
8 14 logl/C@max>6 2392 hits

One can select any of the above four mining levels
or lower ones. Once a level of activity is set, then that
output can be further refined using the parameters
of Tables 1—3. For instance, after selecting the level
of 8 (item 4), the following operations might be used
to narrow ones focus.

15 S+ isolates 59 sets having

- terms in o™

15“S§,”“S finds 923 sets having
''''' atermino

1 HIV finds 118 sets pertaining

- to HIV

2B4 sequesters 800 sets of

- various cells

2 B6 picks up 346 sets in

T multicellular

organisms

15 logP**2 bilin(logP) bilin(ClogP) 180 sets

It is of interest to consider the group of 317 QSAR of
search 2 above to inspect the distribution according
to system.
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B1 macromolecules 1 hit
B2 enzymes 161 hits
B3 organelles 4 hits
B4 single cell organisms 95 hits
BS organs/tissues 53 hits
B6 multicellular organisms 45 hits
total 357 hits

The difference between 317 and 357 is that, as
mentioned above, some sets are given two labels.

Next, we further illustrate similarity searching via
MERLIN by scanning the data (317 sets) obtained
by 14 logl/C@max>9 using 13

4@

to obtain two examples of interest.

(CHzF)2
Z EC,, rat potassium channel openers
NHC; highest log 1/C =9.4
o Me

Me
# EC,, rat potassium channel openers
E;C;(=S) highest log 1/C =9.6

Searching the whole database of 8500 sets we find
the above two plus seven others, three of which
contain other structures. The following illustrates the
methodology.

Parent structure Activity Highest log 1/C
Inhibition of Human 7.6

Platelet 5-lipoxygenase

¥—CgHi— m

oL Me Rat aorta EC;, relaxant 8.0
Me of potassium channel
P activator
Os
J
same as above Rate trachea relaxation 7.7
of potassium channel

activation

e

Me
7/ \ _E Z EC,, relaxant of rat 7.1
)/—- g aorta

Similarity searching on

1

Ny S

and then 14 logl/C@max>9 obtains four hits: in two
of which the heterocyclic unit is only a substituent.
The other two sets are of interest
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CFq 7 =X
W:rlC—NH‘@
Nao S
b

Inhibition of Mitochrondrial
succinate dehydrogenase

%_ /NH2
? | =<
MecuCH N NHR

Inhibition (MIC) of
Helicobacteria Pylori

Note the large numbers of searches that are pos-
sible. Any subsets from Table 2 can be used at any
of the eight levels of searching suggested above; in
addition, the subsets could be narrowed by the use
of any of the parameters. The data sets selected have
a QSAR that has information suggesting the next
moves to avoid or to cultivate in designing better
molecules.

VIIl. On the Use of the Combined Databases

The reason for having a database of QSAR from
mechanistic organic chemistry is 2-fold. This project
was started over 30 years ago in part because of our
curiosity about the large number of ‘Hammett’' equa-
tions that were constantly appearing in scientific
literature. A more compelling reason slowly became
apparent. Familiarity with QSAR from physical
organic chemistry can provide an excellent basis for
understanding and supporting the enormously more
complex QSAR from biomedicine.*579

From the very beginning of our work in the early
1960s, we have worried about formulating meaning-
less QSAR. In the early days we did bolster our
spirits by finding similar QSAR for comparative
support. For instance, an extensive review of the
QSAR of simple alcohols showed general agreement
in a number of ways.®® Most encouraging were the
early studies using molecular graphics?'°-1? and
QSAR to analyze ligand binding to a variety of
enzymes whose crystallographic structures had been
established.

A worrisome factor is the occurrence of outliers.
Sometimes these are easy to understand when the
structural changes in a parent molecule are very
different from the other members of a set. Also, our
parameters are not perfect, and this too may be hard
to fathom. Finally, we have found that experimental
errors are easy to make but difficult to establish.
Another serious problem is that of collinearity caused
by poor selection of substituents or other structural
changes. Hence, it is very important to find support
for a new QSAR by all reasonable means. Similar
studies from the same or similar systems are the best
way. At present, when possible, we like to make
comparisons with studies from mechanistic organic
chemistry. There are a variety of ways to do so.
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For example, we might search the double database
via functional groups as follows

1 12 nitrobenzene 155 hits
2 3 not misc 155 hits
3 15 not logP 86 hits
4 155— 23 hits

A quick 30-s scan of the data after step 4 finds a
number of QSAR of interest containing the parameter
o .
Many environmental studies of mixed sets of
chemicals have been made and correlated with log
P, but the above results suggest that often log P does
not enter the picture in variety of toxicology studies.
Note that polynitro compounds behave according to
a different mechanism, see eq 13. Care must be taken
before sequestering chemicals together for a correla-
tion analysis until it is established that we are
dealing with a homogeneous reaction mechanism.

The following are representative examples of the
activity of the NO, function. _

Reduction of 4-X—CsH4sNO; by CH3;CHOH in N,O-
saturated solution%®

log k = 0.85(+0.15)0 + 8.26(+0.11)
n=13,r*=0.932, s = 0.125, g = 0.915
X=H (9)

Reduction of X—CgH4NO, by pyrimidine-saturated
Nzolosc

outlier:

log k = 1.05(+0.13)0” + 0.06(+0.09)

n =13, r*=0.965, s = 0.120, q° = 0.944 (10)
Reduction of X—C¢H;NO; by xanthine oxidase!6d

log k = 0.98(£0.16)0 —
0.35(40.23)B5, + 2.13(+0.27)

n =26, r>=0.884, s = 0.201, q°* = 0.865
outliers: 4-SO; , 4-SO,NH,, 4-CHO (11)
Acute toxicity of X—CsH4NO; to fathead minnows'%6¢

log 1/C = 1.44(+0.31)0” + 3.85(+0.22)
n=12,r>=0.914, s = 0.242, q>* = 0.866
3,4-di-Cl, 4-Br (12)
I5o of X—CsH4NO, to Daphnia Magnal©sf

outliers:

log 1/C = 0.98(£0.22)0~ + 2.62(£0.41)

Equations 9 and 10 suggest that a radical reaction

n =10, r> = 0.927, s = 0.186, g°> = 0.888

outliers: 4-Br; 3-NO,, 4-CH, (13)
is involved in the reduction of the nitro group. The
biological QSAR eqgs 11—13 are also correlated by o~
with similar p values.
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Another area of interest is the toxicity of olefins.
Searching the combined databases using CH,=
CHCH=CHj, followed by 15 S+ gets 15 hits, two of
which are of interest.

Addition of :CCl, to trans-X—CgH4,CH=CHCH=
CHlel

log K, = —0.42(£0.03)0" — 0.01(+0.02)

n=09,r>=0.994,s=0.025,q°=0.991 (14)

Iso to P. falciparum NF541°2 py

7 CH=CHCH=CH‘©
g _/C—CO0CH;
_CH

OMe

log 1/C = —1.19(+0.55)¢" + 1.43(40.32)B5, +
0.41(£0.25)L, + 6.21(+0.70)

n=12,r>=0.948,s = 0.222, q° = 0.896

outlier: 2,4-di-CH, (15)

A reason for our interest in the above two equations
is the fact that butadiene has long been known to be
carcinogenic. The fact that o* correlates the electronic
effect with a negative coefficient p suggests a radical
reaction.® Also of interest is the reported®® carcino-
genicity in rodents of the two widely used cholesterol-
lowering statins that contain a butadiene unit.

H o}

Q o]
CHyCHy—CH—C- Ha2CHz
CH3 CHj
HO

Lovastatin
H o

R
CH3CH2—?H‘—C HQCHQ
CHj CHs

CHj .
Pravastatin

QSAR can alert one to toxicity features that can
then be checked experimentally. Another example of
toxicity that might have been anticipated today, but
was not in the past, is the drug rezulin. Rezulin was
withdrawn from the market when it was found to
cause serious liver damage.

CHs ‘cHy | ClogP 558
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The encircled portion of the above structure is
identical to that in vitamin E. However, vitamin E
has a long hydrophobic carbon chain that gives it a
calculated Clog P of 12. In fact, this is so high that it
cannot be measured. This chain evolved over time
for a reason. It would anchor the vitamin into a large
hydrophobic region (e.g., the cell membrane) with its
polar phenolic moiety near the surface to scavenge
radicals. The more hydrophilic rezulin is freer to
wander about and form a reactive radical intermedi-
ate via interaction with ROS (reactive oxygen species
produced by cells burning oxygen).

To test radical scavenging ability, Mukai et al.1%
examined the following reaction; the data from this
study was used to derive the following QSAR (o7 is
selected with respect to OH).

1

| CHs + CeHyO®»
X (o)
2 X CH3
-0
| CH3 4 CgHsOH

X O “cH
2 X3 3

log k = —1.08(+0.32)0" +
0.37(£0.28)B1, + 2.35(+0.39)

n =10, r> =0.908, s = 0.095,q>=0.790  (16)

In this system, C¢H4O" is a model for the ROS. B13
accounts for the steric effect of X3 and shows that
substituents in this position have a positive effect on
the reaction. We assume this may inhibit solvation
by the solvent ethanol that would tend to localize
electrons on the ether oxygen, thus inhibiting hydro-
gen abstraction. For example, 4-methoxyphenol is
carcinogenic but phenol is not. An equation similar
to eq 16 has been formulated for the toxicity of simple
phenols, having electronic releasing substituents, to
fast growing leukemia cells.?’

log 1/C = —1.35(+0.15)0" +
0.18(+0.04)log P + 3.31(+0.11)

n=>51,r’=0.895s=0.227,q°=0.882  (17)

Phenols with electron- attracting substituents do
not fit this QSAR, and their toxicity is correlated by
log P alone. Thus, as our database grows, it will
provide more information understandable in mecha-
nistic terms to help in the design of better drugs and
to aid in the understanding of ligand—receptor in-
teractions at the molecular level. There are numerous
examples, especially with potential anticancer drugs,
where studies of QSAR from mechanistic organic
chemistry can be compared with chemical—biological
interactions to clarify reaction mechanisms.*°

A compound that has recently attracted renewed
interest is thalidomide, a teratogenic drug that is now
being investigated in the treatment of leprosy and
cancer.
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f
SO

A MERLIN search on the combined physical—
biological database using phthalimide finds four
datasets. One has a substituent pattern too complex
for consideration and hence a very weak correlation.
Equations 18, 19, and 21 are of potential interest.
We also find that there are no physical QSAR based
on this phthalimide structural feature.

Inhibition of necrosis factor'® by

Phthalidomide

log 1/C = —0.25(+0.26)0" +
0.69(+0.24)CMR — 1.70(+2.1)
n=9,r’>=0.938,s=0.153, g° = 0.886
outlier: 3,4-di-OC3H, (18)

Inhibition of necrosis factor'©® by

9 OOMe

I\ Q

// q;/N—CH‘CE—OMe
b OMe

log 1/C = —0.97(£0.15)¢" + 5.14(+0.12)

n=7,r>=0.983, s=0.124, g> = 0.967

outlier: 2-OH (19)

QSAR 18 has a ot term of borderline value, while
its activity is mainly a function of size as delineated
by CMR. The range in log 1/C for eq 18 is 3.6—5.3,
while the range in eq 19 is 4.4—6.4. Not only are
congeners of QSAR eq 19 more potent, the correlation
of QSAR eq 19 is much sharper. A SMILES search
with benzamide yields a number of studies on hy-
drolysis, three of which have very similar p* terms,
of which the following is an example.

Hydrolysis!® of X—CgH,CONH, in 40% aqueous
ethanol at 65 °C

log k = —0.28(+0.08)¢" — 5.10(+0.03)
n=4,r*>=0.996, s =0.014, g> = 0.902 (20)

Through resonance implied by eq 20 would suggest
the following resonance form to be important in the
case of compounds from QSAR eq 19.

CH3z

S (S
“ N—CH OCH3
PO oL

Ho COOCH;
0

Hansch et al.

Reaction with an electrophilic binding site or agent
is implied.

An interesting comparison comes from the study
of Chan et.al.>%h for the I toxicity of a similar amide
to L1210 leukemia cells.

f
X—:OE;NOR
0]

R =Hor SO,Y where Y = alkyl or -C;H,-Z

log 1/C = —0.93(+0.24)0" — 3.48(+2.30)R,, —
1.30(£0.82)1 + 4.10(+0.80)

n =15, r> = 0.936, s = 0.293, g° = 0.893

outlier: X=H,Y=S0,CHj, (21)

Rm is a measure of hydrophobicity derived from
chromatography. Its negative coefficient is evidence
of a polar receptor. I = 1 for two examples where R
= H. These are unique structures where the OH has
a very deleterious effect on activity. It is of interest
that o has the same p value as in QSAR eq 19. Thus,
egs 19 and 21 might be clues as to why thalidomide
is effective against leprosy or cancer. At this point it
would be of interest to study the reactions of thali-
domide and phthalimide in more detail via classical
LFER.

The above examples are only illustrative and
reflective of the type of datasets that are incorporated
in these database. Many more such comparisons are
possible, and as the database expands, it will become
much more fruitful to search via MERLIN for novel
comparisons. Again using similarity searching on
CsHsCH=CH,, we find a number of reactions of
styrenes and styrene derivatives with radicals from
mechanistic organic chemistry.

Reaction of X—CgH4CH=CH, with 4-CI—C¢H,S" 16
in cyclohexane

log k = —0.58(+0.15)0" + 7.73(+0.06)
n=7,r?=0.949, s = 0.055, q> = 0.924 (22)

Reaction of X—CgH4sCH=CH, with CgHsS* 106i in
cyclohexane

log k = —0.33(+0.08)0" + 7.45(+0.03)
n=6, r>=0.970, s = 0.026, q> = 0.842
outlier: 4-Br (23)

Reaction of X—CgH,CH=CH, with (CH3);COO" 17
in benzene

log K, = —0.31(£0.22)6™ + 0.04(40.09)
n=>5,r’=0.862,s=0.063,q° = 0.645 (24)



Chem-Bioinformatics

Reaction of X—CgH,CH=CH; with CI;C* 8 in
benzene

log K, = —0.49(£0.13)0" + 0.05(x0.04)

n =8, r>=0.937, s = 0.044, g° = 0.882

outliers: 4-CN, 4-NO, (25)

Reaction of X—CgH4C(CH,CH3)=CH, with :CCI,1%®
log K, = —0.37(£0.13)0" — 0.03(%0.05)
n=5,r>=0.964,s=0.032,q°=0.786 (26)

Reaction of X—CsH,CH=CHCsHs with *SCH,COOH
heat!0

log K, = —0.40(+£0.18)0" — 0.01(x0.07)

n=5,r’=0.944, s = 0.041, g = 0.828

outlier: 3,4-di-OMe 27)

There are fewer examples from biological systems
for comparison.

Elevation of serum alanine transaminase in mice
due to hepatic toxicity by X—CgH;CH=CH,!*

log 1/C = —0.46(+0.26)0" + 3.22(+0.18)

n==6,r?=0.862,s=0.118,q> = 0.738
outlier: H (28)

B-Adrenoceptor blocking activity of complex styrenes
in right atria of guinea pigs*'?

H=CH,
=
x I OCHg(l:HCHgNHR
. OH

PA, = —0.98(+0.22)0, " + 0.53(0.32)B1, 5 —
1.36(£0.31)B1, + 7.41(40.43)

n=21,r°>=0.894,s=0.184, g> = 0.839

outliers: R =CMe;, X=H; R=CHMe,, X =

3,5-di-Cl; R = CMe,, X = 3,5-di-CI; R =
CMe;, X = 3-Me, 5-Cl; R = CMe;, X = 3-Me (29)
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Toxicity to HelLa cells compared to colchicine of*?

CHg

Q
X—@—CH=CHC OCHg

OCHj

log 1/C = —1.51(+0.32)0" —
0.62(40.26)B5, + 4.36(+0.69)

n=12, r>=0.931, s = 0.321, g° = 0.880

outliers: 4-NH,, 4-Br, 6-CF;, 4-NHC,H, (30)

It is clear that o* is the parameter of choice,
suggesting a radical mechanism in these pharmaco-
logical actions. Hence, it would be an exercise in
futility to try to develop a drug in which an aromatic
CH=CHg; is conjugated to an electron-rich moiety. As
in the butadiene cases, all of these examples are
correlated with ¢t having negative p values. Another
drug with liver toxicity recently withdrawn from the
market is baycol.

?CHa F
Ha
Mech \
! H
N~
CH=CH(IZHCHZCHCH2COOH
CHMe» OH

Here we find a styrene-like moiety that may well
be the cause of toxicity.

Another functional group that has received atten-
tion from chemists and biologists is the sulfonamido
entity. Equation 31 shows the substituent effect on
ionization of X—CgH4SO,NH,.1%4

pK, = —0.87(40.07)0 + 10.0(:0.04)

n=13,r>=0.985s=0.058,q°=0.977 (31)

Thus, the p value for ionization would be 0.87.

The following biological examples can be compared
with the effect of substituents on the acidity of the
sulfonamide function. One can then determine if the
ionization of sulfonamides impacts their biological
activity.

Inhibition of lyase, carbonic anhydrase by X—CgHg-
SO,NH,1

log 1/C = 0.90(£0.23)0 +
0.23(£0.17)Clog P + 5.36(-£0.15)

n =16, r> = 0.930, s = 0.176, q°* = 0.884
outlier: 2-Me, 2-Cl, 2-NO, (32)
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Naturiuretic action in rats of X—CgH4sSO,NH,116

log 1/C = 0.77(£0.22)0 —
0.16(:£0.16)Clog P + 0.30(0.13)

n =14, r*=0.849, s = 0.151, q°* = 0.734

outliers: 3-NO,, 4-Cl; 4-NO,, 3-CF, (33)
Despite the extra term in eq 33 and the fact that
the action is occurring in rats, the agreement with
ed 31 in terms of p is good. The following is another
example in whole animals.
EDso against electroshock seizures in mice by
X—CeH4SO,N(Y)17

log 1/C = 0.91(0.25)0, +

0.47(:0.16)Clog P — 0.58log(8-10°'* " + 1) +
3.03(+0.12)

n =16, r> = 0.913, s = 0.100, g°> = 0.836,
f=-131

outliers: X =4-Br,Y =0CH;, H; X=4-Br, Y =
CHj;, CH; (34)

Despite the complexity of QSAR eq 34, the p value
is in good agreement with eqs 31—33.

We have been interested in studying the use of the
sterimol parameter B1 for the correlation of steric
effects emanating from the ortho position. From the
combined datasets we can make the following search.

15B1 1220 hits
12 phenol 33 hits

This finds 33 QSAR based on phenols. Inspecting the
results of a mechanistic organic chemical reaction for
comparison with a biological QSAR can be done by
viewing the results with machine sorting on the
coefficient associated with B1.

Bond dissociation energy (BDE) of phenols in kcal/
molllB
BDE = —2.16(+0.54)B1, +

3.91(+0.80)¢" + 88.9(+0.97)
n =14, r> = 0.955, s = 0.584, g°* = 0.926
outlier: H (35)

Sulfation of phenols by human liver sulfotrans-
ferasett®

log V,.,/K,, = —1.91(+0.60)B1, —
0.93(+£0.26)B5, + 0.71(+0.51)0" + 0.05(+1.1)
n=17,r’>=0.870,s = 0.422, g* = 0.670
outliers:  3-NH,, 4-NH,, 3-CHj, 3-C,H; (36)

Although eq 36 is not a very good correlation since
four data points had to be omitted, the comparison
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of the two steric effects would seem to make sense
in that the removal of hydrogen in each example is
critical. The electronic effects in the two sets are quite
different, reflecting a homolytic bond dissociation
reaction in QSAR eq 35 (removal of *H) and a
heterolytic reaction in QSAR eq 36 (removal of a
proton) where one normally finds o~ to be the
parameter of choice for phenols. Steric effects in
QSAR egs 35 and 36 are independent of electronic
effects.

Running a similarity search on the double database
with ¢~ turns up many interesting QSAR for com-
parison. Searching with 15 S— finds 1362 QSAR with
o~ terms. Next, using 16 in Table 1 16 .7<S—<2
isolates 329 QSAR with p between 0.7 and 2. Now
using the sort procedure all QSAR are listed in order
of increasing slopes on ¢~. One of the first equations
that appears is QSAR eq 36 above for the enzymatic
sulfation of phenols. Another example of enzymatic
sulfation is that of X—CgH;,;CH=NOH.*?°

Sulfation by arylsulfotransferase
log V., /Ky = 0.75(£0.25)0 +
0.56(£0.40)Clog P + 6.21(+0.86)

max

n=>5, r>=0.990, s = 0.072, q°> = 0.897 (37)

This makes sense in that the removal of hydrogen
in each example is critical. The electronic effects in
the two sets are equivalent. This resembles phenols
H-bonding in 1,2-dichloroethane with pyridine?!

log k = 0.73(+0.13)0” — 0.67(+0.13)B1, +
1.95(+0.20)

n=17,r>=0.941, s = 0.099, q°> = 0.896

outlier: 2,4,5,-tri-Cl (398)

Now a search for examples with o~ in the range
2—3 finds 104 examples of which the following are
illustrative.

lonization of phenols in aqueous solution!??

log K = 2.01(£0.15)0~ + 1.94(+0.34)F, —
9.86(-0.08)

n =23, r>=0.979, s = 0.146, q> = 0.966

outliers: 4-F, 2-C(Me);, 2-NO, (39)

In this expression, F; is the field/inductive param-
eter for ortho substituents. Fujita and co-workers!?3
established that this parameter adequately accounts
for the importance of the electronic effect of ortho
substituents beyond that accounted for o, constants
used for ortho substituents. Our analyses substanti-
ate this finding.
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A comparable biological example involves the un-
coupling of phosphorylation of mitochondria from
ascaris muscle*?*

log 1/C = 2.04(+0.21)0™ +
0.93(££0.20)Clog P + 0.47(-£0.48)

n=21,r?=0.967, s = 0.393, g = 0.955

outliers: 2-1, 4-CN, 6-NO,; 2,6-di-I, 4-NO,;
4-COMe (40)

Next we consider the parameters o, and ¢* that
have developed from two different systems to model
field/inductive effects of substituents. Searching the
double database we find 260 QSAR based on the
former and 816 based on the latter. These two
parameters, as one might expect, are highly collinear.
We have 362 substituents with both values that show
a mutual correlation of r> = 0.911.

Searching the double database with * 16 2<S'<4
(S' = o*) finds 79 examples.

Alkaline hydrolysis at 35 °C in 15% aqueous
ethanol of RCOOC,H5'25

log k = 2.25(+0.89)0* +
1.04(£0.18)Es — 0.42(+0.35)
n=29,r?=0.988,s=0.150, g = 0.980 (41)

Alkaline hydrolysis at 65 °C in 20% aqueous
methanol of RCOOC,Hs'%¢

log k = 2.51(£0.42)0* +
0.91(40.08)Es — 0.22(+0.34)
n=13,r*=0.989,s=0.196,q° = 0.964  (42)
Rate of hydrolysis of by carboxypeptidase!?’

I
CeH SCHyCH— NHC— R
COOH

log k = 1.98(£0.80)0* —
3.50(+1.80)B1 + 6.10(+2.3)

n=38, r’=0.897, s = 0.416, g> = 0.801

outlier: CHCI, (43)

Rate of hydrolysis of 4-NO,—CgH,COOR by chy-
motrypsint?®
log kg = 2.09(£0.34)0* + 1.21(+0.27)Es +
0.34(£0.10)MR — 0.95(£0.71)1 — 1.91(+0.29)

n =36, r> = 0.950, s = 0.320, g* = 0.933

outliers: 3-indolyl, (CH,);NHCOCHg;

In these four different examples we find rather
close agreement with the ¢* terms and in three of
the four cases agreement with Es terms. The common
point of reaction is with the carbonyl group that is
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influenced by R. The positive Es coefficient implies
a negative steric effect since Es values are negative.
QSAR eq 44 is most interesting because of the small
MR term and the indicator variable | that is assigned
the value of 1 for instances where R = —CgHs—X. In
eight such examples the —CsH,—X moiety is assigned
the value of 1 for R = X—C¢Hys—. Despite the
complexity of QSAR eq 44, the electronic and steric
effects shine through clearly and fall in line with the
much simpler eqs 41—43. This is the kind of lateral
support that one surely needs in formulating biologi-
cal QSAR.

Similarity searching using the double database is
of interest in examining the hydrofuranone function
since it occurs in the highly successful drug Vioxx.

CHS—E O O

0 Vioxx
O

Similarity searching on 2-hydrofuranone yields 33
QSAR. Reducing this to sets that contain electronic
terms yields eight QSAR.

Mutagenicity in the Ames test*?® with S. typhimu-

rium TA100 of
>; :o: ;o

log k = —14.5(+1.91)E, 0 — 13.5(:1.90)

n =20, r’=0.937,s = 1.14, q> = 0.921 (45)

This is a very unusual equation since there was
considerable variation in X, Y, and Z; nevertheless,
an excellent QSAR based on only one parameter (the
energy level of the lowest unoccupied molecular
orbital) is found. The QSAR would suggest care needs
to be exercised in incorporating this unit into com-
mercial products. There are three other similar
equations for mutagenesis.

Only one equation from the physical database is
found—that for the ionization* of

H; : :§
o Yo
pK, = —3.96(+1.1)0, + 3.91(+0.35)

n =10, r’ = 0.904, s = 0.343, q> = 0.861

outlier: CO,Me (46)

It is hard to say whether there is any relation
between these two QSAR. Of course, one would
expect electron withdrawal to promote ionization.
However, QSAR eq 45 shows that electron-releasing
substituents promote activity. Vioxx does not contain
such groups.
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Now scanning the double database as follows
allows us to compare two different subsections.

1 15 s+ 2110 hits
2 15 not **2 bilin 2003 hits
3 2B2A P12 379 hits
4 16 —3<S+<-.9 138 hits
5 12 Phenol 23 hits

The first step yields a tremendous amount of infor-
mation. Step 2 eliminates QSAR with nonlinear
terms; while step 3 sequesters oxidoreductase en-
zymes from the biological database and radical reac-
tions from the physical database. Step 4 narrows the
search to datasets with p in the range from —3 to
—0.9, and finally in step 5, we limit the study to
phenols as substrates.

The following examples display some of the results.

Oxidation by Horseradish peroxidase 13!

log k, = —2.68(£0.78)c" +
1.31(£0.71)x, + 6.36(£0.30)

n=12 r>=0.872,s=0.397, q° = 0.741
outliers: 3-OH, 3,4-di-Me 47)

Hydrogen abstraction with (CgHs),NN*-2,4,6-tri-
NO,CeH 132

log k = —2.68(+0.37)0" —
1.21(+0.32)B1, + 3.19(40.45)

n =18, r’=0.941, s = 0.291, g* = 0.901
outliers: H, 3-OMe, 2,3,4,5,6-penta-Cl; (48)
Oxidation by Mn 111%33
log k = —2.60(+0.69)0" — 6.48(+0.19)
n=7,r>=0.951,s=0.190, g> = 0.921
outlier: 4-COMe (49)

Oxidation by fungal laccases!®*

log Ky, /Ky, = —2.28(+0.55)0" +
1.52(+1.48)B1 — 0.82(40.63)! + 3.05(+1.9)

n =18, r’=0.912, s = 0.349, g* = 0.855

outliers: 2-OMe-4-CH,COO "~ (50)

Iso of prostaglandin cyclooxygenase, sheep vesicle®®
log 1/C = —1.71(+£0.25)0" +
0.69(40.12)Clog P + 1.80(+0.32)

n =25, r> =0.933, s = 0.186, g° = 0.910

outliers: 2,3,5,6-tetra-Me (51)
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Oxidation with peroxydisulfate in aqueous solu-
tion13®

log k = —1.56(+0.17)0" + 0.20(+0.07)

n=34,r>=0.919,s = 0.177, g = 0.909

outlier: 2-COOH, 4-CMe, (52)
In QSAR eq 47, w4 accounts for the specific hydro-
phobicity of para substituents. There is no overall
hydrophobic effect. There is considerable evidence
that a radical reaction underlies all of these equa-
tions, as we have found o* to be a general parameter
for radical reactions.®?” QSAR eq 48, a well-estab-
lished radical reaction, reveals a similar p but with
a negative steric effect for ortho substituents. Nev-
ertheless p is in close agreement with eq 47.

These results are also supported by QSAR eq 53
for the cytotoxic action of simple and complex phenols
(Bisphenol A, Diethylstilbestrol, Estradiol, Estriol,
Equilin, Equilenin) against L1210 leukemia cells.?’

log 1/C = —1.35(+0.15)¢0" +
0.18(+0.04)log P + 3.31(+0.11)

n=>51,r>=0.895s=0.227,q°=0.882  (53)

Actually, a better correlation is obtained using
calculated homolytic bond dissociation energies (BDE)
in place of o (r? = 0.925). This points more directly
to a radical reaction, in this cellular system.

Equation 52 is another type of radical reaction that
has a similar p. Equation 50 is more complicated,
having a positive B1 term for ortho substituents and
an indicator variable that is assigned the value of 1
for 2,6-disubstituted compounds. Although it is based
on a mixture of laccases, p is qualitatively similar to
the other examples. Equation 51 has a lower p value
similar to that of the peroxydisulfate oxidation. Other
factors being equal, we have found that low p values
suggest action by a stronger radical or a more labile
H.6

Up to this point we have considered mostly elec-
tronic parameters for aromatic systems in making
comparisons between biological and physical QSAR.
Two parameters that provide easy to see connections
are Es and B1. The former was developed by Taft
from the hydrolysis of X-CH,COOR

o* = 1/2.48[log(Ky/Ky,)g — 109(Ky/Ky) ]

In this expression o* represents the field inductive
effect of X, kx is the rate constant for the hydrolysis
of X-CH,COOR, and ky is that for the hydrolysis of
CH3COOR. B denotes hydrolysis in basic solution,
while A denotes hydrolysis in acid solution. Es = log-
(kx/kn)a. The above equation is based on the assump-
tion that there is little or no electronic effect in acid
hydrolysis. It is hard to be sure that the two terms
are completely independent, but the evidence over
the years in hundreds of examples indicates that the
separation is reasonable. The Verloop-calculated
values of B1 pertain to the first atom of the substitu-
ent, while Es is related to the whole substituent. B1
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is free of electronic effects. These parameters have
been discussed and illustrated,?>” and compilations
of them have been published.?

The early entries into our system were primarily
Es based. However, around 1990 it was discovered
that B1 was often superior to Es. Also, the large
number of available B1 values and their ability to
be calculated made them a viable option in terms of
structure—activity analysis. Comparisons of recent
work entered into our system since 1995 revealed the
following.

1 1995) (1996) (1997) (1998) (1999) (2000) 3187 hits
Es 60 hits

3 16.4<Es<2 15 hits

o1~

5
1

In these 60 examples Es is found to be the superior
parameter. In biological systems this may account
for an intermolecular steric effect, while in chemical
systems it is often indicative of an intramolecular
effect. The following examples constitute interesting
comparisons.

Relative toxicity to weeds of'3’

g .o
X
g

o}

log K, = 0.46(+0.27)Es —
1.36(£0.50)0* + 1.23(40.44)

n=7,r>=0.936,s=0.092, g° = 0.633

outlier: CHMe, (54)

Affinity of derivatives of strychnine for muscarinic
receptor of type 1138

—R

Z +

log 1/C = 0.50(:0.09)Es +
0.22(£0.09)B5 + 4.65(+0.20)

n =10, r*=0.858, s = 0.105, g° = 0.742  (55)

Es values are lacking for R=CH,C=CH, CH,CgH,-
3-NO,, CH,CsH4-4-NO,. Recall that Es values are
negative, so that the positive coefficient with Es
indicates a deleterious effect (steric hindrance). There
is a very small positive effect from B5 that suggests
that the width of a substituent enhances receptor
affinity. This parameter works better than CMR or
molar volume.
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Rearrangement in aqueous dioxane at pH 3.8 at 313

K139

6Hs CSH5\ N Hs
y —  §
/kO,N NH 0

CegHs
CeHaX

log ky/k,, = 0.53(:0.07)Es, —
1.37(0.10)0 — 0.98(40.24)F, — 0.04(+0.04)

n =20, r’ =0.994, s = 0.065, > = 0.988  (56)
lonization of ph Es;¢ enols in DMSO40

pK, = 0.57(+0.15)Es, ¢ —
6.43(+£0.64)0 + 17.9(£0.53)

n =15, r> = 0.975, s = 0.641, ¢°> = 0.950

outliers: 2,4,6-tri-C4H;; 2,6-di-CMe;,
4-OCOMe (57)

Inhibition of reverse transcriptase in MT-4 cells by
DABO derivatives!4ta

HN Y

/é[

AL P
U

X = Alkyl groups, Y = H or CH,
Z = various substituents

log 1/C = 0.59(+0.34)Es;,_, ¢ + 1.35(+0.61)0 +

3.25(£1.00)Clog P — 0.44(£0.12)Clog P? —
0.50(+0.25)L,_, + 2.36(+0.62)F,_, s + 0.54(+2.2)

n =41, r*=0.869, s = 0.277, q>* = 0.801

outliers: X=Me, Y =H, Z=2,6-di-Cl; X =
CHMe,, Y =H,Z=2,6-di-Cl; X =Me, Y =
Me, Z = 2,6-di-Cl; X=CHMeC,H;, Y = Me, Z =
2,6-di-Cl (58)

The above five QSAR have similar Es coefficients.
In addition, there are a few redundant QSAR and a
few with coefficients above 1.

The biological QSAR (egs 54, 55, 58) all have
coefficients between 0.45 and 0.59 for a wide range
in activities. In QSAR eq 56, the slope is close to that
of eq 58. However, eq 57 is based on pKj, values, and
S0 one needs to multiply by —1 to place the results
on a log K basis which would give the Es term a
negative coefficient, meaning that ortho substituents
promote loss of a proton. The effect is additive since
Es values are assigned to each of the two ortho
positions.

In an earlier comparative study of Es, where the
whole double database was considered not just the
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recent years, we found 13 examples with the Es
coefficient in the range 0.67—0.83. However, these
had not been checked to see if B1 could replace any
of the Es terms. In any case, the results show that
Taft's parameter can be profitably used to deal with
steric effects in biological systems that are similar
to those found in physical organic chemistry. Es was
designed to account for the steric effect of the whole
substituent, while B1 is primarily for the first atom.
In some instances we have found that B1 plus B5
can more than adequately replace Es.

Searching the double database with Es we find 579
QSAR with this term. However, checking using Esc,
we find that 29 of these examples are based on Esc,
a form of Es that was designed to correct for sub-
stituent hyperconjugation (see ref 141b). Searching
with B1 we find 1203 examples where B1 is superior
to Es. Actually it is anticipated that this disparity
will increase when the data is reexamined in order
to establish the superior parameter.

Focusing on more recent work we can do the
following search using the double database.

5 (1999) (2000) (2001)
155+

1330 hits
76 hits

Scanning the 76 sets, a study on the inhibition (Isp)
of endothelial cell nitrous oxide synthetase by sub-
stituted 2-aminopyridines attracts our attention.'#?
I is an indicator variable that accounts for substitu-
tion in position 5.

Inhibition of nitrous oxide synthetase by 2-amino-
X-pyridines#?

log 1/C = —2.48(+0.76)0" —
0.84(+0.30)Clog P — 0.73(+0.50)1 + 6.70(+0.51)

n=17,r’>=0.853, s = 0.394, g° = 0.747

outliers: H, 6-Me (59)

This can be compared with QSAR eq 60.

Complex formation between X-pyridines and Hg
tetraphenylporphin4?

log k = —1.36(+0.19)0" + 1.20(+0.13)
n=>5, r>=0.994, s =0.090, g° = 0.971 (60)

The correlation between these two QSAR may be
fortuitous, but it could be a lead of interest. While
our main interest is in comparative QSAR analysis,
searching for new leads is a prime interest of many.

IX. QSAR Based on Data from Humans

The most interesting subject for the development
of comparative QSAR is that of humans. Although
there is little such work, there are some interesting
examples. Searching with 2 B6H, we find 42 sets of
which we have selected the following examples.
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Sweet taste of X-2-amino-4-nitrobenzenes*4

log RBR = —0.66(+0.28)¢" +
1.32(+0.24)Clog P — 0.07(+0.48)

n=09,r>=0.973,s=0.132,q> = 0.936 (61)

RBR stands for relative biological response. Al-
though response is strongly dependent on Clog P, o™
accounts for 17% of the variance in the data. In
another report, lwamura®*® collected data from the
literature as well as that used in QSAR eq 61 to
derive and report QSAR eq 62, where L and W
represents substituent width and length while A
denotes taste potency.

log A = 0.52(+0.14)L — 1.37(+£1.08)W, +
3.71(+3.49)

n =20, r* = 0.810, s = 0.32 (62)

A reexamination of his data results in the develop-
ment of the following equation

log k = —0.51(+0.28)c" +
1.19(+0.24)Clog P + 0.25(+0.46)

n=18,r>=0.894,s=0.239,q°=0.844  (63)

Outliers 3-NO,, 6-OC4Hg; 3-NO,, 6-OCH=CH, had
to be omitted for lack of a o+ value.

The ot term is close to that of eq 61. The above
two equations can be compared with QSAR eq 64 for
the oxidation of aniline with chloramine-T in ethanol/
water.14%

log k, = —1.41(£0.49)0" + 0.72(+0.12)

n=6,r>=0.941, s = 0.107, g°> = 0.870
outlier: 2-Cl (64)

The similarity of the ot terms in the three ex-
amples makes one wonder if oxidation could possibly
be involved in taste. QSAR eq 63 is based on a more
complex set of data in that in a number of examples
the 4-NO; group has been replaced with 4-CN.

Equations 61 and 62 illustrate an important point
that we have been concerned with. Although Iwa-
mura was well aware of our work in eq 61, his model
only focused on the length and width of substituents
and neglected hydrophobic and electronic param-
eters. The discrepancy in egs 61 and 62 provides
compelling evidence for the importance of lateral
validation in the generation of an appropriate QSAR.
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Another interesting study on taste came from
Mizuta et al., on the flavor-enhancing activity of

ribonucleotides.149b
HN N\
ﬁI -
{ N N

NayO3POCH2

OH OH

log 1/C = 0.51(+0.14)CMR + 0.71(:£0.83)

n=12,r>=0.873,s = 0.102, q> = 0.824

outliers: SCH,C¢Hs;; SCH; CoH. (65)

Although this equation touts the overall depen-
dence on mostly size and polarizability, it does not
clearly delineate which molecular features of this
complex compound are crucial for the biological
activity.

Turning now to another type of activity, 61 QSAR
in the databank focus on studies of cytochrome P450.

Demethylation of X—CgH4N(CHz3)2 by isolated
P450146

log K, /K,, = 0.53(£0.20)log P + 3.47(+0.53)

cat

n=28,r>=0.878,s = 0.093, g> = 0.823

outlier: 4-CHO (66)

Microsomal demethylation of miscellaneous com-
pounds4’

log 1/K,, = 0.70(0.14)log P + 2.86(-0.29)

n =13, r> = 0.915, s = 0.260, q° = 0.884

outlier: Ephedrine (67)

Dealkylation of C¢HsCH(Me)NR; by one person'#®
log k = 0.61(+0.16)log P — 3.09(4+0.51)
n=12,r>=0.874,s = 0.221, g = 0.762

outliers: sec-butyl, benzyl (68)

These examples indicate that dealkylation in the
isolated enzyme, in the organelle, and in humans is
a very similar process. This is the ideal to strive for
in building up a science of chemical—biological in-
teractions.

Another interesting study with humans is that of
nonrenal and renal clearance of f-adrenoreceptor
antagonists: bufuralol, tolamolol, propanolol, alpre-
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nolol, oxprenolol, acebutolol, timolol, metoprolol,
prindolol, atenolol, and nadolol.

Non enal clearance of miscellaneous alcohols acting
as f3-adrenoreceptor antagonists*>®

log K =1.94(+0.61)Clog P —
2.00(£0.80)log(3-10°'°9" + 1) + 1.29(+0.30)

n =10, r’ = 0.950, s = 0.168, q> = 0.918

outlier: oxprenolol

Clog Py, 2.6 (+1.5), log 8 = —0.813 (69)

Using a parabolic model instead of the bilinear
model, one obtains a better defined optimum Clog P
of 2.5 (2.1-3.2).

Renal clearance of f-adrenoreceptor antagonists®°

log K = —0.42(+0.12)Clog P + 2.35(£0.24)

n =10, r> = 0.888, s = 0.185, q> = 0.793

outliers: acebutolol, pindolol (70)

It is clear that the two processes have different
hydrophobic requirements for clearance. A most
unusual QSAR is obtained by assessing human Kkill
by miscellaneous drugs.5!

LD1go for humans

log 1/C = 1.17(40.34)log P + 1.70(=0.70)
n=12,r>=0.869,s=0.498,q°=0.825 (71)

The data for this QSAR comes from England,
where the practice in cases of suicide or accidental
overdose of drugs is that the individuals blood is
analyzed to determine the concentration of drug. In
QSAR eq 71, the concentrations from cases of poison-
ing were averaged to obtain a single value for each
compound. As one might expect, the standard devia-
tion is high. The data pertains to the following
chemicals: ethanol, ether, paraldehyde, chlormethia-
zole, chloroform, phenobarbital, secobarbital, (mapro-
filine outlier) dothiepin, amitriptyline, propoxyphene,
and chlorpromazine. For partially ionized com-
pounds, log D was employed, where D is the distribu-
tion coefficient at ca. pH 7.

The shape of QSAR eq 71 is similar to what has
been termed nonspecific toxicity in our earlier discus-
sion. Hundreds of such QSAR are known for all sorts
of biological systems. In the early days of biological
SAR, it was often assumed that nerve damage was
the critical factor in such toxicity. It is now clear that
many biological processes show results similar to
QSAR eq 71, in which nerves are not involved. Cell
membranes may also be inplicated. In any case, it is
the most sensitive site in the cell or organism that
determines the shape of the QSAR.
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The hallucinogenic activity of X—CsH4sCH>CH(R)-
NH; in humanst®2a152b

log RBR = 1.17(+0.25)log P —
3.28(+1.0)log(8-10'°9P+) — 0.18(+0.15)0™ —
1.49(+0.49)

n=24,r*=0.850,s=0.232, ¢° =
0.801, log Po = 3.24, log p = —3.49

outliers: X = 2,5-di-OMe, 4-Me, R = Me; X =
2,5-di-OMe, 4-Br, R = Me; X =
2,3-di-OMe-4,5-OCH,0, R = Me (72)

The end point was comparing the potency relative
to mescaline in the human subjects. This work was
conducted at the University of Chile; it would have
been illegal in the United States!

X. Allosteric Interactions

Having such a large collection of information based
on QSAR has enabled us to constantly uncover new
relationships. We were recently surprised to discover
instances where correlation with CMR (or sometimes
Clog P) gave inverted parabolic QSAR. That is,
activity first decreased and then at a certain point
turned upward and increased. Obviously a change
in mechanism has occurred. This is in stark contrast
to many hundreds of examples where biological
activity increases to a maximum and then levels or
falls off. The inverted curve suggests a change in the
configuration of the receptor structure. We have
classified this as an allosteric change. The term
comes from allostery, a Greek word for another
shape.

The following examples illustrate our finding based
on CMR.1%#

Inhibition of bovine trypsin by

Oy Q)
NH NH

log 1/k; = —3.02(£1.2)CMR +

0.14(+0.05)CMR? + 0.46(+0.25)B1, +
21.7(+0.70)

n=22, r>=0.837,s=0.131,q* = 0.772
3-NHCO-gly-NH,
10.8 (10.2—11.1) (73)

outlier:

inversion point:

Hansch et al.

Inhibition of dopamine D, receptor from rat striatal
membrane by!53.154

@—QN—CH2CH2C:—ZCX

log 1/k, = —14.2(+8.3)CMR +

0.72(+0.41)CMR? — 0.47(+0.19)Clog P +
78.5(+41.7)

n =14, r>=0.837, s = 0.186, q> = 0.665

outlier: 4-HO—-C4H,-; 2-pyridinyl

inversion point:  9.85 (9.43—-10.0) (74)

Inhibition of angiogenesis in mixed mouse lympho-
cyte cell cultures'® by analogues of TNP-470 and
ovalicin®®®

log 1/C = —3.98(+1.46)Clog P +
0.95(+0.39)Clog P? + 0.92(+0.72)1 + 10.5(+1.5)

n=11, r*=0.941, s = 0.375, q° = 0.812

inversion point:  2.09 (1.92—2.35) (75)
I = 1 for congeners having two epoxide units.
There has been great interest in allosteric interac-

tions since Monod et. al. first introduced the idea.!615"

Recently, Changeux and Edelstein reviewed the

subject.1%®

Note that in the above two examples CMR has an
initial negative slope, but at the value of CMR = 10.8
of eq 72 and 9.85 in eq 73, the slope becomes positive.
Care must be taken to see that the inversion point
is solidly established. A plot of the data and confi-
dence limits on the point of inversion are necessary,
otherwise one may have an L-shaped result where
the activity first falls and then more or less levels
off. As discussed above, CMR does contain a molec-
ular volume component. However, we have observed
in 11 published examples that CMR cannot be
replaced by a molecular volume term. Thus, it ap-
pears that polarizability does play a role in these
inverted parabolic relationships.

The first clear understanding of allosteric interac-
tions was elucidated by Monod et al.*®® from the
interaction of ligands with hemoglobin. The above
three examples are of course for quite different
systems. We have recently found evidence on hemo-
globin that is related directly to Monod'’s study.

Rate constants for the binding of isonitriles (R—
N*=C-) to the alpha subunit of human hemoglobin?®

log k = —0.77(£0.44)Clog P +
0.35(+0.23)Clog P? — 1.72(+0.44)B1 +
4.76(+0.78)

n=12, r>=0.949, s = 0.188, q> = 0.833
R = CH,CH(CH,),
1.11 (0.9-1.7) (76)

outlier:

inversion point:
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The above QSAR shows that hydrophobic proper-
ties of the ligand can also induce an allosteric
interaction. Many such examples based on CMR or
Clog P have been uncovered, and a review on the
subject is now in progress.®®

A more interesting example is the following:

Binding of X—CsH4sNO; to hemoglobin in Wistar
rats'6°

log HBI = 3.62(+1.4)0" — 11.1(+5.64)Clog P +
1.97(+1.0)Clog P? + 1.51(+1.0)B1, + 14.2(+7.9)

n =14, r> = 0.874,s = 0.507, q°> = 0.743
2,4-di-F
2.82 (2.61—3.1) (77)

In the above expression, HBI is the hemoglobin
binding index (i.e., mmol of compound/mol of HB/
mmol of compound/kg of body weight). Although the
above equation is not as sharp as one would like and
the ratio of data points to variables is rather low, the
inversion point is well defined. The sterimol param-
eter B1, brings out the presence of a positive steric
effect of 4-substituents, and the electronic term o™
suggests that the nitro group is reduced to a radical
which then binds to hemoglobin and, no doubt, to
other targets too.

Normally o~ is determined to be the best parameter
for this process with regard to the nitro moiety;
however, in this instance it yields a slightly poorer
result (r> = 0.854). The two parameters ¢~ and o"
are in the present instance highly collinear (r? =
0.964). These preliminary results suggest that QSAR
can be used to uncover allosteric interactions with
hemoglobin, enzymes, or in cells and animals.

A possibility that needs to be considered in such
studies is that if the structure of the receptor or
enzyme is undergoing a large change, would the
points of contact on the down side and the up side
change in ways so the electronic properties of the
system would be incongruent. At present, a method
of searching our system is to isolate all QSAR that
have —CMR and +CMR? terms or the same for Clog
P. This can be done in less than a minute.

outlier:

inversion point:

XI. Conclusions

The above review outlines one informatics ap-
proach to developing some understanding about the
interface between chemical—chemical and chemical—
biological interactions. Certainly it will not be the last
effort. We believe that specialized efforts such as this
will also be forced to evolve in other areas as the
output of information continues to burgeon in all
areas of science. Chemical Abstracts or online search-
ing of the literature is too nonspecific to provide the
necessary structure that is so important for under-
standing a particular subsection of science. Scheme
1 outlines the makeup of our current system.

The major design problem is to decide on how many
levels of searching to provide and how to name these
levels for defining and collecting data. Tables 2 and
3 outline our nomenclature that grew as specific
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needs emerged. The physical database has 23 major
classes that seemed to do a fair job; however, we were
forced to introduce a miscellaneous class that has
slowly grown to almost 500 QSAR. Nevertheless, this
area can be rapidly searched in terms of parameters
or chemical structures using the SMILES or MER-
LIN options. At present, one can survey these rather
quickly, but as the system continues to grow, new
classes may be needed. Even as it stands, it is easy
to use for someone having a little background in
mechanistic organic chemistry.

The biological database presents the onerous prob-
lems. Under enzymes there are so many potential
kinds of subclassifications for oxidoreductases, hy-
drolases, and receptors. Indeed, receptors, the fastest
growing class, needs a separate subclassification that
must soon be undertaken. No doubt, this will also
be true for nucleic acids. At present, we can quickly
isolate the 676 QSAR for oxidoreductases and then
scan the names in a few minutes to find one of
interest that can be downloaded for detailed analysis.

Cells present some ambiguity. At present, we are
going to label bacteria as Gram positive or negative.
Most cells are clearly named and can be located
easily. The sets involving organs and tissues can be
viewed for leads, but eventually more subsections will
be needed. In the case of whole animals, mice present
a minor problem as sometimes they are denoted in
the singular form. Searching 2 B6a and then 1
mouse mice finds 289 QSAR which when searched
individually yields 88 on mice and 201 on mouse.

The most serious drawback to general usage of the
database is that of the researchers background. Even
chemists have trouble with the meaning of the
Hammett parameters, and of course, these are opaque
to most biological researchers. Many chemists have
limited backgrounds in molecular biology. One also
needs experience in building models and some un-
derstanding of simple statistics. There are no simple
solutions to the problem of understanding chemical—
biological interactions.

Various approaches to QSAR tend to minimize the
real complexity of mathematically delineating the
significant structural features of a set of ‘congeners’
acting on just a single cell culture, not to mention a
mouse or a man. The possibilities for side reaction/
interaction are enormous. Recently, Wermuth and
Clarence-Smith'®! reviewed some of the well-estab-
lished multiple targets of known drugs. For example,
the antipsychotics clozapine and olanzapine have
been shown to bind to at least 14 different receptors.
The hope of medicinal chemists is that testing
modifications of old drugs can lead to more potent
and more selective new drugs. We believe that our
system of bioinformatics will be of help in such work.
For example, the drug chloramphicol, an excellent
antibiotic, had to be withdrawn from the market
because of serious side reactions. It was assumed by
many that it was the nitro group that was the source
of the toxicity. We have shown instead that it is the
benzylic moiety that is easily converted to a radical,
a reaction well correlated by Eg.1? This propensity
for radical formation (and the basis for a solid
mechanistic interpretation of chemical reactions)
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could have been lowered by replacing the nitro with
a substituent having a lower Er value. However, the
nitro group can also readily undergo a radical reduc-
tion. Today, the incorporation of a nitro group into a
prospective drug target would be frowned upon.
However, there would be little concern about using
a hydroxymethyl group attached to an aromatic ring,
which can be made more biologically susceptible to
a radical reaction by conjugation with a substituent
having a large Eg value. Recently we were informed
by a researcher at a leading drug company that
management has suggested that it is not a good idea
to incorporate an aromatic OH function in a prospec-
tive drug. Again, we have shown that it is a matter
of what the OH is conjugated with.?” Electron-
releasing groups increase the propensity for radical
formation, but electron-attracting groups inhibit such
a reaction.?” This kind of information can be gathered
from simple biological systems early on in a research
project. Once a drug goes to market, it is very difficult
to detect certain types of radical toxicity. Such
toxicity could result in cancer after many years of use.
As we have noted, computational chemistry for drug
design has been making rapid strides in the last 10
years. It is not unusual for companies to have 50 or
more computerized programs for such work. How-
ever, the problems are daunting. One can quickly
learn to punch in the numbers, but careful evaluation
of the output warrants extensive experience. It is of
critical importance that we utilize the enormous
amount of work that has laid the basis for a sound
mechanistic interpretation of chemical reactions.
Phenol is not mutagenic or carcinogenic, but 4-meth-
oxyphenol is carcinogenic to rodents. Gradually an
expert system of chemical—biological informatics will
educate us about the complexity of drug interactions.
A word needs to be said about the Hammett
parameters. They is the achievement of over 60 years
of study by thousands of chemists. These results are
invaluable in studying how chemicals react with each
other, and the results can readily be compared with
the enormous number of studies on many, many
types of reactions. Quantum chemistry offers no such
possibilities yet, although it may sometime in the
distant future. In the final analysis, comparative
QSAR, regardless of how it is attained, is the only
guide in the evolution of our understanding of how
chemicals affect living systems or their parts.
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